早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

一种路用压电换能器及其制备方法和置入方法

  • 专利名称
    一种路用压电换能器及其制备方法和置入方法
  • 发明者
    王朝辉, 孙晓龙, 李彦伟, 王玉飞
  • 公开日
    2014年5月28日
  • 申请日期
    2014年3月12日
  • 优先权日
    2014年3月12日
  • 申请人
    长安大学
  • 文档编号
    C04B41/51GK103824933SQ201410090810
  • 关键字
  • 权利要求
    1.一种路用压电换能器,包括电极基板和粘结于电极基板上表面的压电芯片,其特征在于,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下重量份的原料制成电气石粉10?20份,石墨5?10份,氧化锆5?10份2.根据权利要求1所述的一种路用压电换能器,其特征在于,所述压电复合材料由以下重量份的原料制成电气石粉12?18份,石墨6?8份,氧化锆6?8份3.根据权利要求2所述的一种路用压电换能器,其特征在于,所述压电复合材料由以下重量份的原料制成电气石粉15份,石墨8份,氧化锆8份4.根据权利要求1、2或3所述的一种路用压电换能器,其特征在于,所述电极基板为铜电极板、银电极板、铁电极板或钼电极板5.一种制备如权利要求1、2或3所述路用压电换能器的方法,其特征在于,该方法包括以下步骤 步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末; 步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为150°C?250°C,压力为IOOMPa?200MPa的条件下热压成型,冷却后得到压电复合材料; 步骤三、采用烧渗法在压电复合材料表面被银; 步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至80°C?120°C,然后向压电复合材料两端施加高压直流电场进行极化,得到压电芯片;所述高压直流电场的电压为3000V?10000V ; 步骤五、将步骤四中所述压电芯片粘接于电极基板上表面,得到路用压电换能器6.一种如权利要求1、2或3所述路用压电换能器的置入方法,其特征在于,该方法为将多个路用压电换能器叠放在一起组装成路用压电换能器单元,在路面铺筑封层之前,将多个所述路用压电换能器单元横向间隔铺设于路面或沿车轮轮迹带铺设于路面7.—种如权利要求1、2或3所述路用压电换能器的置入方法,其特征在于,该方法为将多个路用压电换能器叠放在一起组装成路用压电换能器单元,然后在路面内部设置坑槽,将路用压电换能器单元布设于所述坑槽内,再用覆盖板将布设有路用压电换能器单元的坑槽覆盖,并在覆盖板和路用压电换能器单元之间设置用于保护路用压电换能器单元的缓冲密封板8.根据权利要求7所述的方法,其特征在于,所述缓冲密封板为塑料泡沫板,所述覆盖板包括钢板和设置于钢板上方的橡胶垫9.一种如权利要求1、2或3所述路用压电换能器的置入方法,其特征在于,该方法为将多个路用压电换能器叠放在一起组装成路用压电换能器单元,然后将路用压电换能器单元置于水泥混凝土中,制成带有路用压电换能器单元的水泥混凝土板块,然后采用带有路用压电换能器单元的水泥混凝土板块直接进行路面铺设
  • 技术领域
    [0001]本发明属于道路压电换能器
  • 专利摘要
    本发明公开了一种路用压电换能器,包括电极基板和粘结于电极基板上表面的压电芯片,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下重量份的原料制成电气石粉10~20份,石墨5~10份,氧化锆5~10份。另外,本发明还公开了该路用压电换能器的制备方法以及置入方法。本发明合理利用了电气石的优良的压电特性,在外部压力作用下,可通过自身的压电性能将机械能转化为电能,从而完成机械能向电能的转换,制备的路用压电换能器具有能量转换效率高、耐久性好、使用寿命长、成本低廉等优点。
  • 发明内容
  • 专利说明
    一种路用压电换能器及其制备方法和置入方法
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
一种路用压电换能器及其制备方法和置入方法【技术领域】,具体涉及一种路用压电换能器及其制备方法和置入方法。[0002]道路作为重要的基础设施,对国民的生产、生活以及国家的经济增长起着重要作用。作为国家运输交通的重要组成部分,道路在承担交通功能的同时也存在着大量的环境能量,例如车辆行驶的动能,车辆自重能量,轮胎摩擦能量等。若可将诸多环境能量收集并加以利用,可以大幅降低能耗,同时还可以提高能量的利用率。通过压电模式将道路上交通荷载产生的部分机械能源转化为可利用的电能作为一种理想的能量利用方式,从能量收集的角度来看,作为一种潜在、规模可观、可再生的清洁能源,压电式能量收集道路有着巨大的研究和应用前景,因此,亟需一种高效的能量转换装置来满足道路能量收集领域的需求。
[0003]本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种路用压电换能器。该路用压电换能器合理利用了电气石的优良的压电特性,在外部压力作用下,可通过自身的压电性能将机械能转化为电能,从而完成机械能向电能的转换,具有能量转换效率高、耐久性好、使用寿命长、成本低廉等优点。[0004]为解决上述技术问题,本发明采用的技术方案是:一种路用压电换能器,包括电极基板和粘结于电极基板上表面的压电芯片,其特征在于,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下重量份的原料制成:电气石粉10?20份,石墨5?10份,氧化错5?10份。[0005]上述的一种路用压电换能器,所述压电复合材料由以下重量份的原料制成:电气石粉12?18份,石墨6?8份,氧化锆6?8份。[0006]上述的一种路用压电换能器,所述压电复合材料由以下重量份的原料制成:电气石粉15份,石墨8份,氧化锆8份。
[0007]上述的一种路用压电换能器,其特征在于,所述电极基板为铜电极板、银电极板、铁电极板或钼电极板。
[0008]另外,本发明还提供了一种制备上述路用压电换能器的方法,其特征在于,该方法包括以下步骤:
[0009]步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末;
[0010]步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为150°C?250°C,压力为IOOMPa?200MPa的条件下热压成型,冷却后得到压电复合材料;
[0011]步骤三、采用烧渗法在压电复合材料表面被银;
[0012]步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至80°C?120°C,然后向压电复合材料两端施加高压直流电场进行极化,得到压电芯片;所述高压直流电场的电压为3000V?IOOOOV ;
[0013]步骤五、将步骤四中所述压电芯片粘接于电极基板上表面,得到路用压电换能器。
[0014]进一步的,本发明还提供了一种上述路用压电换能器的置入方法,其特征在于,该方法为:将多个路用压电换能器叠放在一起组装成路用压电换能器单元,在路面铺筑封层之前,将多个所述路用压电换能器单元横向间隔铺设于路面或沿车轮轮迹带铺设于路面。
[0015]进一步的,本发明还提供了另一种上述路用压电换能器的置入方法,其特征在于,该方法为:将多个路用压电换能器叠放在一起组装成路用压电换能器单元,然后在路面内部设置坑槽,将路用压电换能器单元布设于所述坑槽内,再用覆盖板将布设有路用压电换能器单元的坑槽覆盖,并在覆盖板和路用压电换能器单元之间设置用于保护路用压电换能器单元的缓冲密封板。
[0016]上述的方法,所述缓冲密封板为塑料泡沫板,所述覆盖板包括钢板和设置于钢板上方的橡胶垫。
[0017]进一步的,本发明还提供了另一种上述路用压电换能器的置入方法,其特征在于,该方法为:将多个路用压电换能器叠放在一起组装成路用压电换能器单元,然后将路用压电换能器单元置于水泥混凝土中,制成带有路用压电换能器单元的水泥混凝土板块,然后采用带有路用压电换能器单元的水泥混凝土板块直接进行路面铺设。
[0018]所述重量份可以为克、两、斤、公斤、吨等重量计量单位。
[0019]本发明与现有技术相比具有以下优点:
[0020]1、本发明的路用压电换能器具有能量转换效率高、耐久性好、使用寿命长、成本低廉等优点。
[0021]2、本发明合理利用了电气石的优良的压电特性,在外部压力作用下,可通过自身的压电性能将机械能转化为电能,从而完成机械能向电能的转换。
[0022]3、本发明的压电换能器的置入方式,施工方法简单,不会对路面的整体性和功能性造成破坏,不会降低路面的路用性能,而且成本低廉,性价比较高,可满足不同路面条件使用。
[0023]下面通过实施例,对本发明的技术方案做进一步的详细描述。

[0024]本发明的路用压电换能器及其制备方法通过以下实施例1至实施例6进行描述:
[0025]实施例1
[0026]本实施例的路用压电换能器,包括铜电极板和粘结于铜电极板上表面的压电芯片,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下原料制成:电气石粉10g,石墨5g,氧化锆5g。
[0027]本实施例的路用压电换能器的制备方法:
[0028]步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末;
[0029]步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为200°C,压力为150MPa的条件下热压成型,冷却后得到压电复合材料;
[0030]步骤三、采用烧渗法在压电复合材料表面被银;
[0031]步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至100°C,然后向压电复合材料两端施加5000V高压直流电场进行极化,得到压电芯片;
[0032]步骤五、将步骤四中所述压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0033]对比例I
[0034]本对比例的压电复合材料由电气石粉制成。
[0035]将IOg电气石粉干燥后置于钢制模具中,在温度为200°C,压力为150MPa的条件下热压成型,冷却后得到压电复合材料;然后采用烧渗法在压电复合材料表面被银;将被银后的压电复合材料置于有机硅油中加热至100°c,然后向压电复合材料两端施加5000V高压直流电场进行极化,得到压电芯片;最后将压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0036]对比例2
[0037]本对比例的压电复合材料由电气石粉和石墨制成。
[0038]将IOg电气石粉和5g石墨混合后研磨均匀,得到混合粉末;将混合粉末干燥后置于钢制模具中,在温度为200°C,压力为150MPa的条件下热压成型,冷却后得到压电复合材料;然后采用烧渗法在压电复合材料表面被银;将被银后的压电复合材料置于有机硅油中加热至100°C,然后向压电复合材料两端施加5000V高压直流电场进行极化,得到压电芯片;最后将压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0039]对比例3
[0040]本对比例的压电复合材料由电气石粉和氧化锆制成。
[0041]将IOg电气石粉和5g氧化锆混合后研磨均匀,得到混合粉末;将混合粉末干燥后置于钢制模具中,在温度为200°C,压力为150MPa的条件下热压成型,冷却后得到压电复合材料;然后采用烧渗法在压电复合材料表面被银;将被银后的压电复合材料置于有机硅油中加热至100°C,然后向压电复合材料两端施加5000V高压直流电场进行极化,得到压电芯片;最后将压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0042]实施例2
[0043]本实施例的路用压电换能器,包括铜电极板和粘结于铜电极板上表面的压电芯片,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下原料制成:电气石粉15g,石墨Sg,氧化锆Sg。
[0044]本实施例的路用压电换能器的制备方法:
[0045]步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末;
[0046]步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为150°C,压力为200MPa的条件下热压成型,冷却后得到压电复合材料;
[0047]步骤三、采用烧渗法在压电复合材料表面被银;
[0048]步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至80°C,然后向压电复合材料两端施加3000V高压直流电场进行极化,得到压电芯片;
[0049]步骤五、将步骤四中所述压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0050]实施例3
[0051]本实施例的路用压电换能器,包括铁电极板和粘结于铁电极板上表面的压电芯片,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下原料制成:电气石粉20g,石墨10g,氧化锆10g。[0052]本实施例的路用压电换能器的制备方法:
[0053]步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末;
[0054]步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为250°C,压力为IOOMPa的条件下热压成型,冷却后得到压电复合材料;
[0055]步骤三、采用烧渗法在压电复合材料表面被银;
[0056]步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至120°C,然后向压电复合材料两端施加10000V高压直流电场进行极化,得到压电芯片;
[0057]步骤五、将步骤四中所述压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0058]实施例4
[0059]本实施例的路用压电换能器,包括钼电极板和粘结于钼电极板上表面的压电芯片,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下原料制成:电气石粉12g,石墨7g,氧化锆6g。
[0060]本实施例的路用压电换能器的制备方法:
[0061]步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末;
[0062]步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为200°C,压力为150MPa的条件下热压成型,冷却后得到压电复合材料;
[0063]步骤三、采用烧渗法在压电复合材料表面被银;
[0064]步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至100°C,然后向压电复合材料两端施加5000V高压直流电场进行极化,得到压电芯片;
[0065]步骤五、将步骤四中所述压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0066]实施例5
[0067]本实施例的路用压电换能器,包括银电极板和粘结于银电极板上表面的压电芯片,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下原料制成:电气石粉18g,石墨6g,氧化锆7g。
[0068]本实施例的路用压电换能器的制备方法:
[0069]步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末;
[0070]步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为180°C,压力为150MPa的条件下热压成型,冷却后得到压电复合材料;
[0071]步骤三、采用烧渗法在压电复合材料表面被银;
[0072]步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至100°C,然后向压电复合材料两端施加8000V高压直流电场进行极化,得到压电芯片;
[0073]步骤五、将步骤四中所述压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0074]实施例6
[0075]本实施例的路用压电换能器,包括铜电极板和粘结于铜电极板上表面的压电芯片,所述压电芯片由压电复合材料被银后极化制成,所述压电复合材料由以下原料制成:电气石粉20g,石墨5g,氧化锆5g。
[0076]本实施例的路用压电换能器的制备方法:
[0077]步骤一、将电气石粉、石墨和氧化锆混合后研磨均匀,得到混合粉末;
[0078]步骤二、将步骤一中所述混合粉末干燥后置于钢制模具中,在温度为220°C,压力为130MPa的条件下热压成型,冷却后得到压电复合材料;
[0079]步骤三、采用烧渗法在压电复合材料表面被银;
[0080]步骤四、将步骤三中被银后的压电复合材料置于有机硅油中加热至100°C,然后向压电复合材料两端施加3000V高压直流电场进行极化,得到压电芯片;
[0081]步骤五、将步骤四中所述压电芯片粘接于铜电极板上表面,得到路用压电换能器。
[0082]本发明的路用压电换能器的置入方法通过以下实施例7至实施例9进行描述:
[0083]实施例7
[0084]将多个(可以为2~10个,或者根据实际情况进行选择)路用压电换能器叠放在一起组装成路用压电换能器单元,在路面铺筑封层之前,将多个所述路用压电换能器单元横向间隔铺设于路面或沿车轮轮迹带铺设于路面。
[0085]实施例8
[0086]将多个(可以为2~10个,或者根据实际情况进行选择)路用压电换能器叠放在一起组装成路用压电换能器单元,然后在路面内部设置坑槽,将路用压电换能器单元布设于所述坑槽内,再用覆盖板(包括钢板和设置于钢板上方的橡胶垫)将布设有路用压电换能器单元的坑槽覆盖,并在覆盖板和路用压电换能器单元之间设置用于保护路用压电换能器单元的缓冲密封板(塑料泡沫板)。
[0087]实施例9
[0088]将多个(可以为2~10个,或者根据实际情况进行选择)路用压电换能器叠放在一起组装成路用压电换能器单元,然后将路用压电换能器单元置于水泥混凝土中,制成带有路用压电换能器单元的水泥混凝土板块,然后采用带有路用压电换能器单元的水泥混凝土板块直接进行路面铺设。
[0089]对本发明实施例1-6以及对比例1-3的路用压电换能器的性能进行测试,试验方法为:按照《公路工程浙青及浙青混合料试验规程》(JTGE20-2011)成型标准车辙板,在制作过程中将压电换能器置入车辙板内部中心区域,距离表面Icm处。制作完成后,将制作好的车辙板放置在车辙试验仪上,将轮子压在车辙板压电换能器布置处,同时将示波器连接在压电换能器的两端导线上。开动车辙仪,利用示波器测试并记录当轮子压过压电换能器时的瞬时最大及最小电压。
[0090]表1路用压电换能器的性能测试结果
[0091]

查看更多专利详情

下载专利文献

下载专利