早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

组合心脏辅助系统、方法和装置制作方法

  • 专利名称
    组合心脏辅助系统、方法和装置制作方法
  • 发明者
    W.S.彼得斯, R.G.帕金, D.罗萨, D.M.拉方塔恩, W.T.阿布拉哈姆, B.孙
  • 公开日
    2013年2月20日
  • 申请日期
    2011年4月1日
  • 优先权日
    2010年4月2日
  • 申请人
    阳光心脏有限公司
  • 文档编号
    A61M1/12GK102939117SQ201180027436
  • 关键字
  • 权利要求
    1.一种心脏辅助系统,包括(a)机械心脏辅助装置;(b)操作地联接至机械心脏辅助装置的控制器,控制器被构造为传输促动信号至机械心脏辅助装置;和(C)操作地联接至控制器的电疗装置,该电疗装置包括(i)操作地联接至电疗装置的至少一个传感器,其中该传感器被构造为检测心脏特性和传输与该心脏特性相关的信号至电疗装置;和(ii)操作地联接至电疗装置的至少一个节拍部件,该节拍部件被构造为调节心脏节拍2.如权利要求I所述的心脏辅助系统,其中传感器是感测引线,该感测引线被构造为可定位在心脏中或附近3.如权利要求I所述的心脏辅助系统,其中传感器被物理地与电疗装置集成4.如权利要求I所述的心脏辅助系统,其中节拍部件是节拍引线,该节拍引线被构造为可定位在心脏中或附近5.如权利要求I所述的心脏辅助系统,其中节拍部件被物理地与电疗装置集成6.如权利要求I所述的心脏辅助系统,其中控制器被物理地与电疗装置集成7.如权利要求I所述的心脏辅助系统,其中控制器被物理地与机械心脏辅助装置集成8.如权利要求I所述的心脏辅助系统,其中机械心脏辅助装置是搏动装置9.如权利要求I所述的心脏辅助系统,,其中电疗装置是可植入心脏再同步治疗和去纤颤装置(“ CRT-D ”)10.如权利要求I所述的心脏辅助系统,其中电疗装置是可植入复律器-去纤颤器装置 (“ICD”)11.如权利要求I所述的心脏辅助系统,其中传感器是电感测引线,其被构造为感测心室收缩的降低或损失以及传输信息至电疗装置,其中电疗装置被构造为传输促动信号至控制器,其中控制器被构造为传输促动信号至机械心脏装置,以使其操作以提供循环支持,直至心脏被去纤颤或正常心率被恢复12.如权利要求I所述的心脏辅助系统,其中传感器是电感测引线,其被构造为感测心室收缩的降低或损失以及传输信息至电疗装置,其中电疗装置被构造为传输促动信号至控制器,其中控制器被构造为传输促动信号至机械心脏装置,以使其操作以提供循环支持,直至电疗装置对心脏去纤颤13.如权利要求I所述的心脏辅助系统,其中电疗装置被构造为与被构造为促动机械心脏辅助装置的控制器同步地促动至少一个节拍部件以电刺激心脏的心 室14.如权利要求I所述的心脏辅助系统,其中传感器选自以下组成的组电传感器;ECG 传感器;心脏振动传感器,心脏声音传感器,流动传感器,压力传感器,阻抗传感器,壁应力传感器,和光反射性传感器,其中传感器可定位在心脏或心脏的大血管内或附近15.如权利要求I所述的心脏辅助系统,其中传感器是声音传感器,其中该声音传感器是主动脉瓣膜声音传感器,其被构造为检测心脏中的主动脉瓣膜的声音16.一种控制心脏辅助装置的方法,该方法包括利用传感器感测心脏的特性;经由传感器传输关于心脏特性的信号至电疗装置;至少部分地基于心脏特性信号促动电疗装置以传输节拍信号至节拍部件;传输信号至控制器,其中传输信号至控制器是至少部分地基于心脏特性信号的;以及以来自控制器的促动信号促动机械心脏辅助装置,其中该促动是至少部分地基于送至控制器的信号的17.如权利要求16所述的方法,其中传输信号至控制器进一步包括经由联接至电疗装置和控制器的连接引线传输信号至控制器18.如权利要求16所述的方法,其中传感器是感测引线19.如权利要求16所述的方法,其中节拍部件是节拍引线20.如权利要求16所述的方法,其中控制器被物理地与电疗装置集成21.如权利要求16所述的方法,其中控制器被物理地与机械心脏辅助装置集成22.如权利要求16所述的方法,其中机械心脏辅助装置是搏动装置23.如权利要求16所述的方法,进一步包括基于关于心脏特性的信息促动机械心脏辅助装置和电疗装置二者以同步地操作以辅助心脏24.如权利要求16所述的方法,其中心脏特性包括心室收缩的降低或损失,其中促动电疗装置进一步包括基于关于心脏特性的信息促动电疗装置以经由心室引线传输去纤颤放电至心脏,且其中促动机械心脏辅助装置进一步包括促动机械心脏辅助装置以提供循环支持,直至心脏被去纤颤或正常心率被恢复25.如权利要求16所述的方法,其中心脏特性包括心室收缩的降低或损失,其中促动电疗装置进一步包括基于关于心脏特性的信息促动电疗装置以经由心室引线传输去纤颤放电至心脏,且其中促动机械心脏辅助装置进一步包括促动机械心脏辅助装置以提供循环支持,直至电疗装置传输去纤颤电荷至心脏26.如权利要求16所述的方法,其中电疗装置是I⑶27.如权利要求16所述的方法,其中电疗装置是CRT-D28.如权利要求16所述的方法,其中促动电疗装置和促动机械心脏辅助装置进一步包括在促动电疗装置以经由节拍部件传输节拍信号至心脏的同时,同步地促动机械心脏辅助装置以操作主动脉压缩结构以压缩上行主动脉,由此机械心脏辅助装置和电疗装置协同操作以辅助心脏29.如权利要求16所述的方法,其中心脏特性从以下组成的组中选出心脏振动、心脏声音、流动、压力、阻抗、壁应力、和光反射性30.一种辅助和增强心脏的方法,该方法包括利用感测引线感测心脏的特性;经由感测引线传输关于心脏特性的信息至心脏电疗装置至少部分地基于关于心脏特性的信息促动心脏电疗装置经由联接至电疗装置和控制器的连接引线传输关于心脏特性的信息至控制器;以来自控制器的促动信号促动机械心脏辅助装置,其中该促动是至少部分地基于关于心脏特性的信息的;和周期性地正时机械心脏辅助装置和心脏电疗装置的促动,从而在心脏内建立对收缩的预定量的阻力31.如权利要求30所述的方法,其中心脏电疗装置是I⑶32.如权利要求30所述的方法,其中心脏电疗装置是CRT-D33.如权利要求30所述的方法,其中周期性地正时机械心脏辅助装置和心脏电疗装置的促动进一步包括每天在预定治疗时间段促动这些装置从而在心脏内建立对收缩的预定量的阻力34.如权利要求33所述的方法,进一步包括当心脏被增强时增加或减小预定处理时间段35.如权利要求33所述的方法,进一步包括在预定量的时间后增加或减小预定处理时间段36.一种控制心脏辅助装置的方法,该方法包括利用传感器感测心脏的特性;经由传感器传输关于心脏特性的信号至电疗装置;至少部分地基于心脏特性信号促动电疗装置以传输信号至引线;传输信号至控制器,其中传输信号至控制器是至少部分地基于心脏特性信号;以及以来自控制器的促动信号促动机械心脏辅助装置,其中该促动是至少部分地基于送至控制器的信号37.如权利要求36所述的方法,其中信号是节拍信号38.如权利要求36所述的方法,其中信号是去纤颤信号
  • 背景技术
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:组合心脏辅助系统、方法和装置的制作方法组合心脏辅助系统、方法和装置技术领域这里描述的各个实施例涉及用于控制机械心脏辅助装置的操作或控制机械心脏装置和电疗装置二者的操作的方法和装置。心力衰竭是退化性疾病,其导致降低的心输出量,其具有高度的症候,对于病人具有非常显著的生存质量问题。除了药物以外的疗法包括心脏再同步疗法(CRT)、心脏辅助疗法,例如LVAD (左心室辅助装置),以及最终的心脏移植。心力衰竭病人中的由CRT疗法提供的心脏的左右心室的再同步控制具有已证实的优点,包括安全、改善生存质量、和减少住院和NYHA类心力衰竭水平。但是,CRT疗法仅适用于一部分心力衰竭病人且大部分初期显然适于以CRT疗法治疗的心力衰竭病人对于以证明的优点是“非回应者”。小于30%的心力衰竭病人被考虑用于CRT处理且非回应者被报告为处理过的病人的25%至45%。大量机械心脏辅助装置被用于治疗心力衰竭病人。这种装置包括与心脏正时同步操作的搏动装置和不具有这种同步性地运行的非搏动装置二者。例如,反博 (counter-pulsation)法心脏辅助装置,例如申请人的在2004年10月26日提交的题为 “Heart Assist Devices, Systems and Methods” 的美国专利 6,808,484 中披露的那些,该专利通过引用全部合并于此,该辅助装置被构造为与心脏舒张周期同步地挤压主动脉,其开始的标志是在心脏舒张过程中关闭主动脉瓣膜以降低主动脉的内部体积。该挤压增加了全身血压,增加了通过冠状动脉的血流量且增加了舒张输出量以应对关闭的主动脉瓣膜。 被正时为r波的挤压时间的释放和心脏收缩的开始提供左心室非加载和改善的心肌自主收缩。其它搏动心脏辅助装置包括协同脉搏装置,其被构造为与心室的收缩和主动脉的填充同步地挤压心脏。协同脉搏装置的一个实例是右心室协同脉搏辅助装置,例如美国专利4,690,134或5,169,381中描述的装置。协同脉搏装置被与心室去极化同步地触发,以辅助心脏输出。协同脉搏辅助装置已经被描述用于左右心室二者且被减少在动物研究中实践,该研究例如 “Copulsation Balloon for Right Ventricular Assist ance:PreliminaryTrials,,,Circulation, 99:2815-2818(1999)。如在反博法中,以自主节拍的正时必须精确用于最大的效率。在本领域中存在对于用于控制波动心脏辅助装置的操作或控制用于各种类型心脏疗法的搏动心脏装置和电疗装置(例如CRT起搏器)二者的操作的改善的方法、自主和系统的需求。发明内容这里披露的是各种心脏疗法,其配置为提供心脏辅助,包括具有电疗装置和机械心脏辅助装置二者的各种系统、方法和装置。在实例1中,一种心脏辅助系统包括机械心脏辅助装置、操作地联接至机械心脏 辅助装置的控制器、以及操作地联接至控制器的电疗装置。控制器被构造为传输促动信号 至机械心脏辅助装置。电疗装置具有操作地联接至电疗装置的至少一个传感器和操作地联 接至电疗装置的至少一个节拍部件。该至少一个传感器被构造为检测心脏特性和传输与该 心脏特性相关的信号至电疗装置。该至少一个节拍部件被构造为调节心脏的节拍。实例2涉及根据实例1的系统,其中传感器是感测引线,其中该感测引线被构造为 可定位在心脏中或附近。实例3涉及根据实例1的系统,其中传感器被物理地与电疗装置集成。实例4涉及根据实例1-3任一个的系统,其中节拍部件是节拍引线,其中该节拍引 线被构造为可定位在心脏中或附近。实例5涉及根据实例1-3任一个的系统,其中节拍部件被物理地与电疗装置集成。实例6涉及根据实例1-5任一个的系统,其中控制器被物理地与电疗装置集成。实例7涉及根据实例1-5任一个的系统,其中控制器被物理地与机械心脏辅助装 置集成。实例8涉及根据实例1-7任一个的系统,其中机械心脏辅助装置是搏动装置。实例9涉及根据实例1-8任一个的系统,其中电疗装置是可植入心脏再同步治疗 和去纤颤装置(“CRT-D”)。实例10涉及根据实例1-8任一个的系统,其中电疗装置是可植入复律器-去纤颤 器装置(“ICD”)。实例11涉及根据实例1-10任一项的系统,其中传感器是电感测引线,其被构造为 感测心室收缩的降低或损失以及传输信息至电疗装置,其中电疗装置被构造为传输促动信 号至控制器,其中控制器被构造为传输促动信号至机械心脏装置,以使其操作以提供循环 支持,直至心脏被去纤颤或正常心率被恢复。实例12涉及根据实例1-10任一项的系统,其中传感器是电感测引线,其被构造为 感测心室收缩的降低或损失以及传输信息至电疗装置,其中电疗装置被构造为传输促动信 号至控制器,其中控制器被构造为传输促动信号至机械心脏装置,以使其操作以提供循环 支持,直至电疗装置对心脏去纤颤。实例13涉及根据实例1-10任一项的系统,其中电疗装置被构造为与被构造为促 动机械心脏辅助装置的控制器同步地促动至少一个节拍部件以电刺激心脏的心室。实例14涉及根据实例1-13任一项的系统,其中传感器选自以下组成的组电传感 器;ECG传感器;心脏振动传感器,心脏声音传感器,流动传感器,压力传感器,阻抗传感器, 壁应力传感器,和光反射性传感器,其中传感器可定位在心脏或心脏的大血管内或附近。实例15涉及根据实例1-13任一项的系统,其中传感器是声音传感器,其中该声音 传感器是主动脉瓣膜声音传感器,其被构造为检测心脏中的主动脉瓣膜的声音。在实例16中,一种控制心脏辅助装置的方法包括利用传感器检测心脏的特性,经 由传感器传输关于心脏特性的信号至电疗装置,和至少部分地基于心脏特性信号促动电疗 装置以传输节拍信号至节拍部件。该方法还包括传输特性信号至控制器和利用来自控制器 的促动信号促动机械心脏辅助装置,其中传输信号至控制器是至少部分地基于心脏特性信 号,且其中该促动是至少部分地基于送至控制器的信号。
实例17涉及根据实例16的方法,其中传输信号至控制器进一步包括经由联接至电疗装置和控制器的连接引线传输信号至控制器。
实例18涉及根据实例16或17的方法,其中传感器是感测引线。
实例19涉及根据实例16-18任一个的方法,其中节拍部件是节拍引线。
实例20涉及根据实例16-19任一个的方法,其中控制器被物理地与电疗装置集成。
实例21涉及根据实例16-19任一个的方法,其中控制器被物理地与机械心脏辅助装置集成。
实例22涉及根据实例16-21任一个的方法,其中机械心脏辅助装置是搏动装置。
实例23涉及根据实例16-22任一个的方法,进一步包括基于关于心脏特性的信息促动机械心脏辅助装置和电疗装置二者以同步地操作以辅助心脏。
实例24涉及根据实例16-23任一项的方法,其中心脏特性包括心室收缩的降低或损失,其中促动电疗装置进一步包括基于关于心脏特性的信息促动电疗装置以经由心室引线传输去纤颤放电至心脏,且其中促动机械心脏辅助装置进一步包括促动机械心脏装置以提供循环支持,直至心脏被去纤颤或正常心率被恢复。
实例25涉及根据实例16-23任一项的方法,其中心脏特性包括心室收缩的降低或损失,其中促动电疗装置进一步包括基于关于心脏特性的信息促动电疗装置以经由心室引线传输去纤颤放电至心脏,且其中促动机械心脏辅助装置进一步包括促动机械心脏装置以提供循环支持,直至电疗装置传输去纤颤电荷至心脏。
实例26涉及根据实例16-25任一个的方法,其中电疗装置是I⑶。
实例27涉及根据实例16-25任一个的方法,其中电疗装置是CRT-D。
实例28涉及根据实例16_22、26或27任一项的方法,其中促动电疗装置和促动机械心脏辅助装置进一步包括在促动电疗装置以经由节拍部件传输节拍信号至心脏的同时, 同步地促动机械心脏辅助装置以操作主动脉压缩结构以压缩上行主动脉,由此机械心脏辅助装置和电疗装置协同操作以辅助心脏。
实例29涉及根据实例16-28任一项的方法,其中心脏特性从以下组成的组中选出心脏振动、心脏声音、流动、压力、阻抗、壁应力、和光反射性。
在实例30中,一种辅助和增强心脏的方法包括利用感测引线检测心脏的特性,经由感测引线传输关于心脏特性的信息至心脏电疗装置,和至少部分地基于关于心脏特性的信息促动心脏电疗装置。该方法进一步包括经由联接至心脏电疗装置和控制器的连接引线传输关于心脏特性的信息至控制器,和利用来自控制器的促动信号促动可植入机械心脏辅助装置,其中该促动是至少部分地基于关于心脏特性的信息。此外,该方法包括周期性地正时机械心脏辅助装置和心脏电疗装置的促动,从而在心脏内建立对收缩的预定量的阻力。
实例31涉及根据实例30的方法,其中心脏电疗装置是I⑶。
实例32涉及根据实例30的方法,其中心脏电疗装置是CRT-D。
实例33涉及根据实例30-32任一项的方法,其中周期性地正时机械心脏辅助装置和心脏电疗装置的促动进一步包括每天在预定治疗时间段促动这些装置从而在心脏内建立对收缩的预定量的阻力。
实例34涉及根据实例33的方法,进一步包括当心脏被增强时增加或降低预定治疗时间段。
实例35涉及根据实例33或34的方法,进一步包括在预定时间量之后增加或降低预定治疗时间段。虽然露了多个实施例,根据下面的详细说明,其示出和描述了本发明的示例性实施例,本发明的其它实施例将对于本领域技术人员是明显的。如应认识到的,本发明能在各个方面修正,而都不偏离本发明的精神和范围。因此,附图和详细说明应被认为是实质上说明性的而非限制性的。
在实例36中,一种控制心脏辅助装置的方法包括利用传感器检测心脏的特性,经由传感器传输关于心脏特性的信号至电疗装置,和至少部分地基于心脏特性信号促动电疗装置以传输信号至引线。该方法还包括传输信号至控制器和利用来自控制器的促动信号促动机械心脏辅助装置,其中传输信号至控制器是至少部分地基于心脏特性信号,且其中该促动是至少部分地基于送至控制器的信号。
实例37涉及根据实例36的方法,其中信号是节拍信号。
实例38涉及根据实例36的方法,其中信号是去纤颤信号。


图I是具有根据一个实施例的组合心脏辅助系统的病人的剖切图2A是具有根据另一实施例的组合心脏辅助系统的病人的剖切图2B是并入图2A的组合心脏辅助系统中的电疗装置的连接集线块的侧视图3A是具有根据另一实施例的组合心脏辅助系统的病人的剖切图3B是并入图3A的组合心脏辅助系统中的” Y”形连接器的前视图4是具有根据另一实施例的组合心脏辅助系统的病人的剖切图。

这里描述的发明和各个实施例涉及用于控制机械心脏辅助装置,例如搏动心脏辅助装置和电疗装置,的操作的方法、装置和系统。例如,这里描述的各个实施例涉及控制搏动心脏辅助装置(例如上述美国专利6,808,484中公开的各种装置)结合电疗装置(例如 I⑶或CRT-D装置)的操作。这里讨论的其它实施例还适用于控制其它心脏辅助装置,包括但不限于主动脉内气囊、主动脉成形术(aortomyoplasty)、其它反博和协同搏动装置、起搏器、去纤颤器、心动周期监视、或左心室辅助装置。其它实施例涉及控制这些各种装置的任意组合。
这里提出的方法、装置和系统涉及检测心动周期中的至少一个特定点以用于给反博和协同搏动心脏辅助装置计时。这些方法、装置和系统的各个实施例可在充血性心力衰竭过程中辅助心脏,在心脏事件中提供紧急循环支持,或在心力衰竭恢复过程中提供对于心脏的有计划的抵抗训练。特定实施例涉及方法、装置和系统,其具有电感测引线,该感测引线被用于控制机械心脏辅助装置和电心脏辅助装置,例如组合内部去纤颤和心脏再同步治疗装置("I⑶/CRT装置〃),其被直接或间接地互连。在这些实施例中,I⑶/CRT装置可被用于调节心脏节拍或替换地用于去纤颤,而机械心脏辅助装置可被用于在ICD/CRT被用于去纤颤时,辅助心脏(单独地或与I⑶/CRT装置结合)或用于在心室纤颤(“VF”)或心搏停止过程中提供“内部CPR”至心脏。替换实施例具有ICD/CRT装置,其可被用作感测引线以检测心电心脏信号,该信号然后被用于控制心脏辅助装置同时还被用于调节心脏节拍或替换地用于去纤颤。
图I示出了具有心脏12的病人10。心脏12的输出受到搏动可植入心脏辅助装置 14的辅助。在一个实施例中,心脏辅助装置14具有位于病人的上行主动脉周围的主动脉袖口(aortic cuff) 16ο可被用在这里描述的各个实施例中的具有主动脉袖口的心脏辅助装置的各个实例在2007年12月11日授权的题为“A Fluid Pressure Generating Means”的美国专利7,306,558中被提出,其通过引用全部合并于此。替换地,任意已知的搏动心脏辅助装置可被使用。在该实施例中,袖口 16由泵18驱动。泵18由外部电池/控制器22经由透皮电缆24供电/控制。
该实施例还具有起搏器20。在一个示例性应用中,起搏器20是双腔起搏器20,例如 ALTRUA 族的型号 S603 的起搏器,其可从 Boston ScientificCorp. of St Paul, MN, USA 商业获得。替换地,任意已知的起搏器可被用在该实施例中。该起搏器20具有连接至感测引线26且由此连接至心脏12的心室的心房电路,和通过电缆28连接至控制器22的心室电路。
在操作中,根据一个实施例,在通过心房电路接收心室节奏信号(即心室的R波) 后,起搏器20可等待预定时间然后发送节拍信号至控制器22,其进而控制心脏辅助装置14 的搏动。替换地,起搏器20可立即(没有任何预定延迟)发出节拍信号。应理解,在上述构造中,起搏器20通常在控制器22不能发送起搏器22所等待的代表心室节奏的信号时发送节拍信号至控制器22。如果期望的话,起搏器20可在心房电路中接收到感测信号时立即从心室电路发送节拍信号。在这种情况下,应在控制器22内建立延迟以确保心脏辅助装置 14被促动的时刻被正确地与自主心律相关联。
根据一个实施例,起搏器20可被调节以根据病人需要通过使用可用编程器来控制心脏辅助装置。而且,起搏器通常被设计为允许即使在存在电子干扰时也能正确地感测心脏活动。它们通常被设计为能经受去纤颤脉冲而不损坏。
在所示的实施例中,心脏辅助装置14是反博装置,其中搏动与病人的自主心律相位不同。起搏器20的心房电路通常适于感测心房的P波,但是,在该特定实施例中,其代替地感测如上所述的心室的R波,且传输该信号至控制器22,其由此同步搏动装置14的促动。
根据一个应用,光学耦合隔离器30可被布置在电缆28中以将起搏器20从控制器22电隔离开。该隔离器30将起搏器的心室电路产生的节拍信号转变为光信号,该光信号然后被变回为电信号,该电信号被传送至控制器22。隔离器防止电信号从或通过控制器 22被传送至心脏12。合适类型的隔离器的一个商业可获得实例是0PI110线隔离器,其可从Optek Technology Inc ofCarrollton, Texas获得。替换地,电装置20 (或任意根据这里披露的任意实施例的任意其它电装置)可具有光学输出通道,其经由纤维光缆输出光学信号(而不是电信号),例如在美国专利6,925,328公开的纤维光缆(其通过引用全部合并于此),用于装置至装置通信,从而隔离器30不是必须的。
图2A和2B描述了另一实施例,其涉及具有搏动可植入心脏辅助装置42和电疗装置44 二者的系统和方法40。在一个实施例中,电疗装置44是心脏再同步治疗装置 (“CRT”)。替换地,电疗装置44是可植入复律器去纤颤器(“I⑶”)。在其他实施例中,电疗装置44是组合CRT-I⑶装置(也称为“CRT-D”)。在关于图2A的描述的其余部分(以及在附加的图中的实施例和这里的相关描述)中,其假定电装置44是CRT-D装置,应理解其他已知的电疗装置可被并入系统的各个实施例中。心脏的输出68受到搏动装置42和电疗装置 44利用以下详述的各操作模式的辅助。
在一个实施例中,心脏辅助装置42是位于病人的上行主动脉周围的主动脉袖口 42。应理解,上面描述且通过引用并入的’ 558专利中公开的任意搏动装置或任意已知的搏动心脏辅助装置可被使用。
搏动装置42和电装置44都被联接至外部驱动器/控制器46。更具体地,搏动装置42经由驱动线48被联接至驱动器/控制器46中的泵(未示出)。电装置44经由电引线 50而被联接至驱动器/控制器46。如图2A中所示,在一个实施例中,驱动线48和电引线 50分别从搏动装置42和电装置44延伸至” Y”形连接器52。在” Y”形连接器52处,驱动线48和电引线50被定位在内部装置联接电缆54中。电缆从” Y”形连接器52延伸,穿过病人的切口 56,延伸至定位在病人外的第一连接器58。第一连接器58被可去除的联接至位于外部装置联接电缆62的一端处的第二连接器60,该电缆62从第二连接器60延伸至驱动器/控制器46。在该构造中,驱动线48从搏动装置42延伸,穿过”Y”形连接器52,穿过切口 56,穿过第一连接器58和第二连接器60的连接部,且延伸至驱动器/控制器中的泵 (未示出)。类似地,电引线从电装置44延伸,穿过” Y”形连接器52,穿过切口 56,穿过第一连接器58和第二连接器60的连接部,且延伸至驱动器/控制器。这里提出的系统的可替换应用不具有” Y”形连接器。而是,搏动装置42和电疗装置44可通过任意已知的结构或部件而被联接至控制器。
在该实施例中,袖口 42经由驱动线48被驱动器/控制器46中的泵(未示出)驱动。在该应用中,驱动线48是空气线48。在替换构造中,泵可为独立的单元,其位于系统上的任意位置处,只要其被联接至装置42。根据一个应用,泵是任意一种可编程泵,其可以以受控方式而被驱动,具有可调节压力、体积和旋转速率,且在本领域中是已知的。可被并入驱动器/控制器46中的泵的一个实例在美国专利7,306,558中详述,其通过引用和在上面讨论而并入,其中泵是流体填充腔体,以及由螺杆驱动马达驱动的往复活塞,但是整个位于外部驱动器/控制器46内且被联接至空气线48。替换地,泵可为由电马达驱动且联接至空气线48的隔膜风箱和往复活塞。可被用在驱动器/控制器46中的其它类型的泵包括涡轮压缩机、压电马达、线性马达、超声马达、或压缩气体。
驱动器/控制器46还具有能量源(未示出)。在一个实施例中,该能量源是电源,例如电池、太阳能、无线RF或感应耦合线圈。替换地,能量源可为气动能量源,例如液体C02。
在一个实施例中,连接器引线50是可连接两个部件的任意已知引线。例如,在一个实施例中,连接器引线50是已知的互连IS-I至IS-I连接器电缆50,其可从例如Oscor Inc. of Palm Harbor, FL这样的公司商业获得。替换地,连接器引线50可为双用途引线,其被构造为不仅传输正常节拍触发信号(例如至控制器46),还传输编码数字信号或包含DC 和AC 二者或RF分量波形的多路信号。在一个应用中,组合波形可被用于控制搏动装置42 且由此简化对于控制器46的数值处理负荷。在另一替换例中,组合波形可被用于传递感测的信息至控制器46 (例如关于下面详述的各个模式的信息,包括紧急CPR支持模式、增加活动模式、需要更大行程体积、或用于较低行程体积的降低活动模式)。
图2A中的电疗装置44具有连接集线块64。在一个实施例中,连接集线块64具有图2B中所示的构造,其具有五个端口 64A、64B、64C和64D,如下所述。替换地,应理解, 这里提出的特定实施例或任意其它实施例中使用的连接集线块可为任意已知的集线块64。 例如,在特定实施例中,六端口集线块(即该块具有六个端口)被使用。图2B中的集线块64 限定了凹连接腔(也成为“端口”)64八、648、6扣和64D,其被构造为接收要被联接至装置44 的电感测和节拍引线。例如,在一个应用中,如图2B中所示的端口 64B被构造为接收用于如图2A中所示的右心室引线66的连接器。类似地,附加的感测和/或节拍引线可被连接至集线块64。如图2B中最佳所示,根据其中电装置是CRT-D的一个应用,端口 64A被构造为接收用于心房引线(未示出)的连接器,端口 64C被构造为接收用于联接至控制器46的连接器引线50的连接器,两个端口 64D被构造为接收附加连接器,该附加连接器用于右心室引线中的去纤颤电极(未示出)和上腔静脉电极(superior vena cavaelectrode)。替换地, 集线块64中的端口可被构造为接收适用于任意特定类型的电疗装置44的任意已知配置的引线。应理解,在集线块64处联接至装置44的右心室引线66和心房引线(未示出)被定位为穿过血管,例如锁骨下静脉,且最终位于心脏中的预定位置中。更具体地,右心室引线66 的末端被定位在右心室中且心房引线(未示出)被定位在心房中。还应理解,连接引线50从集线块64延伸至” Y”形连接器52,如上详述。
在一个示例性实施例中,电疗装置44是已知的双腔可植入复律器去纤颤器,其具有心脏再同步治疗器(CRT-D),且在更具体应用中是型号D274TRKConcerto II CRT-D,其可从Medtronic Inc. of Minneapolis, MN USA商业获得。该实施例中的该装置是多程序心脏装置,其通过提供单或双腔速率响应心搏徐缓节拍、顺序两心室节拍、心室快速性心律失常治疗(tachyarrhythmia therapy)、和心房快速性心律失常治疗,来监视和调节病人的心律。如上述实施例中,该特定CRT-D装置44具有IS-I集线块,用于连接至反博控制器46。 在一个示例性操作中,Concerto II CRT-D装置44可通过提供心动徐缓节拍治疗对心动徐缓作出响应,其还以编程速率驱动辅助装置控制器46。
根据一个应用,系统40 (或这里描述的任意其它系统实施例)可被基于已经被植入病人中的已有标准电节拍系统构建。更具体地,预期如这里提出的具有电和搏动辅助二者的系统实施例的一种典型用途是在处置具有已有植入电疗装置的病人中,该病人处于失败的CRT情况中或为“无响应者(non-responder)”且要求或可受益于附加的心脏辅助。即, 病人具有标准电节拍系统,其包括电疗装置44和心房、左和右心室引线,但是出于一些原因电疗不成功或有效。因此,出于各种原因,增加搏动装置42来建立如图2中所示系统40 而不改变先前植入的电疗装置的操作,对于病人是有利的。这可通过植入具有驱动线48的装置42、联接连接器引线50至集线块64和”Y”形连接器52、和通过联接第一连接器58和第二连接器60而连接控制器46至系统40来实现。在图2A中所示的实施例中,通过将左心室引线从端口 64C断开和将连接器引线50插入端口 64C就位,连接器引线50被联接至集线块64。在该应用中,左心室引线可被从病人去除,或其可简单地被断开而保持植入病人中。在另一实施例中,其中集线块64是六端口集线块,左心室引线不必从该块断开。替换地,整个系统40 (包括电疗装置和机械装置和相关联部件)可被同时植入(在那些其中没有先植入的电疗系统已就位的情况下)。
图2中提出的系统40通过至少四种不同操作模式中的一个提供组合机械和电心脏辅助。
在一个实施例中,操作模式是“同步节拍”,其中系统40提供组合的主动脉反博(经由心脏辅助装置42)和通过电疗装置44的直接控制,由此导致受控的同步心室和主动脉心脏辅助。换句话说,电疗装置44控制心脏特性的感测和电疗装置44与搏动装置42 二者的同步操作。在该实施例中,心脏辅助装置42提供与电疗装置44同步的补充心脏辅助。更具体地,在一个实施例中,CRT-D 44经由心房引线(未示出)和/或右心室引线利用已知技术感测心脏特性。例如,CRT-D 44可经由心房引线接收关于心房去极化 (atrialdepolarization)的信息,且还可经由右心室引线66传输心室节律信号(即心室的 R波)。CRT-D 44处理器则施加已知处理,用于控制心房引线(未示出)和/或右心室节拍引线66的脉冲,以电刺激心脏以使其模仿正常心跳的方式跳动。在标准心脏电疗系统中, CRT-D通常通过脉动右和左心室引线刺激心脏以使其模仿正常方式跳动。如现有技术中已知的,依赖于心室内延迟优化(其完全依赖于具体病人),联接至右和左心室引线二者的 CRT-D可(I)同时脉动两个引线,(2)首先脉动右心室引线然后是左心室引线,或(3)首先脉动左心室引线然后是右心室引线。相反,在图2A和2B所示的实施例中,其中CRT-D 44 被联接至右心室引线66和搏动装置42 (且不联接至左心室引线),CRT-D 44可通过首先脉动右心室引线66然后是搏动装置42来刺激心脏以使其模仿正常方式跳动,如下详述。在如这里所述的其中CRT-D具有右和左心室引线的组合系统的替换实例中,(例如但不限于如下所述图3A和3B或其中CRT-D具有六端口集线块的各个实施例),CRT-D可通过脉动右和左心室引线和促动搏动装置来膨胀或以其他方式压缩主动脉(通常在脉动右和左心室引线后),刺激心脏以使其模仿正常的方式跳动。
因此,除了其标准的已知功能,根据关于同步节拍的实施例,CRT-D 44处理器还可控制搏动装置42以提供补充搏动辅助给心脏。例如,在一个应用中,当从一个或多个引线 (例如心房引线和/或右心室引线)接收心脏特性信号时,CRT-D 44处理器可通过经由电引线50发送节拍信号至控制器46而导致搏动装置42膨胀,而该控制器进而控制搏动装置42 的搏动。
应理解,对搏动装置42的促动以压缩主动脉的正时通常不与右心室引线(或具有左心室引线的那些实施例中的左心室引线)的脉动同时发生,如上所述。替代地,如关于这里所述的具有右心室引线(未示出)和左心室引线108 二者的那些实施例(例如,图3中描述的实施例)中最佳解释的,右和左引线被首先脉动以刺激心室收缩。通常仅在血液已被从左心室压入主动脉和主动脉瓣膜已关闭后,搏动装置42被促动以压缩主动脉来提供搏动辅助,以将血液压出主动脉且压出至身体。这样,为了搏动装置42的同步操作以支持或增强由心室的电刺激提供的心脏辅助的目的,搏动装置42的膨胀应被适当地正时,以确保膨胀发生在主动脉瓣膜关闭后。此外,还应理解,刚在主动脉瓣膜打开前或打开(且左心室开始收缩且将血液压入主动脉)时去膨胀(deflate)的搏动装置42的去膨胀正时可建立降压动作(在这里也被称为“心室卸载”)其有助于将血液压入主动脉,从而搏动装置42可通过脉动主动脉以迫使血液进入身体且还通过在主动脉瓣膜打开时去膨胀以协助将血液压入主动脉,来提供心脏辅助。
在一个实施例中,CRT-D 44处理器通过在经由心房和/或右心室引线接收心脏特性信息后等待预定时间(例如但不限于从10至80毫秒范围的心室至心室“W”间隔延迟)可提供适当的正时用于搏动装置42的搏动。在预定时间后,CRT-D 44经由引线50发送节拍信号至控制器46,其然后促动控制器46中的泵以经由驱动线48脉动搏动装置42。根据一个应用,系统(CRT-D44或控制器46)进一步补偿间隔时间延迟和等容收缩以提供精确的去膨胀正时。
在替换实施例中,控制器46提供适当的正时用于搏动装置42的搏动。S卩,在接收心脏特性信息后,CRT-D 44处理器立即经由引线50发送节拍信号至控制器46。在该实施例中控制器46在接收节拍信号后等待预定时间段,然后促动泵。在预定的时间段后,控制器46促动泵,其经由驱动线48提供流体压力,该压力促动搏动装置42。
不管CRT-D 44或控制器46是否控制该正时,应理解,经由CRT-D的电刺激和经由搏动装置42的机械搏动的正时应被初始地“调适”或定制用于每个单独病人。即,每个病人的心脏特性是不同的且由此系统40 (以及这里的任意其它系统实施例)的部件的精确正时应被设定或调节以符合这些特性。如上所述,最终目的是优化节拍引线和搏动装置42的正时,从而节拍引线导致心脏的心室作为统一的整体收缩(由此反应正常的心脏运作)且搏动装置42最大化心室卸载和辅助血液至身体的循环。这样,可实现这种操作的系统40部件(包括这里描述和/或批量的任意其它系统)的任意正时可被使用。
根据一个应用,如上所述的“同步节拍”模式在处理对标准电节拍不响应的那些病人时特别有效。即,一部分病人(被称为“无响应者”)不能成功地利用CRT-D (或其它类型的节拍装置)以标准电节拍处理以通过左和右心室引线刺激心室收缩。这样,图2中描述和上述的系统可被用于通过组合机械心脏辅助(使用搏动装置42)和标准电辅助来提供心脏治疗给这些无响应者。
根据同步节拍模式的一个替换变化例,系统40可提供比率适应,其中由搏动装置 42提供的支持量可被根据病人的心律改变。例如,在一个实施例中,在同步节拍过程中,搏动装置42的正常支持率应为1:2。换句话说,搏动装置42每两次心跳膨胀一次。替换地, 正常支持率可为任意期望的比率。在该变化例中,当病人的心律由于病人活动而变化时,支持率可被调节。在一个应用中,控制器46处理器可被编程以具有预定心律水平,在该水平上处理器发送信号至搏动装置42以增加其支持率(例如至I :1)。替换地,CRT-D 44处理器可被如此编程。
在操作中,病人心律可由于锻炼或任意类型的体力活动而增加。当心律增加时, CRT-D 44的感测引线(例如心房和/或右心室引线)可检测到该增加且提供该信息给CRT-D 44。然后,如上所述,当比率增加达到预定水平时,CRT-D 44处理器或控制器46处理器可传输信号至搏动装置42以将其支持率增加一些预定量(例如1:1)。替换地,CRT-D 44处理器或控制器46处理器可传输信号至装置42来以任意已知方式增加其支持(例如,增加主动脉压缩量)。在另一替换实施例中,系统还可提供当心律下降至低于预定水平时(例如当病人睡觉时)将搏动装置42的支持降低一些预定量。
同步节拍模式的又一替换实施例涉及基于跨胸阻抗调节搏动装置42的支持量。 已知标准ICD和CRT装置能通过跨胸阻抗测量来感测肺中堆积的流体。更具体地,电装置 44和一个引线上的去纤颤电极之间的传导率被定期地测量。如果传导率随时间增加,这是肺中的流体量已增加的指示,且该信息可被CRT-D传输至一些外部部件以被用户或医生或可随后采取适当的治疗步骤以试图解决该增加的流体的其它相关人员检阅。在本实施例中,如果在两次测量之间阻抗达到特定水平或增加了特定量,CRT-D 44可被编程以增加搏13动装置42的支持率。更具体地,CRT-D 44可被编程以增加搏动装置42的支持率,从而其比流体增加前更频繁地膨胀。在一个实例中,CRT-D 44可从I :2增加支持率至I :1。替换地,任意期望的增加可被使用。在另一替换例中,代替增加支持率,CRT-D 44可被编程以增加搏动装置42膨胀的量。
在另一实施例中,图2中描述的系统40可以以一模式操作,该模式可被称为“内部心肺复苏”(或“内部CPR”),其中系统40在导致心室收缩或输出量损失的急性发作事件(例如心室纤颤、心搏停止等)中,通过经由搏动装置42提供机械形式的CPR或循环支持同时经由电疗装置44 (在该例中为CRT-D 44)同时地提供标准的分层电疗(tiered electrical therapy),而提供补充心脏辅助。CRT-D 44可控制搏动装置以一速率泵动心脏,以最大化循环支持,直至电疗成功重启心脏或直至紧急生命支持人员到达。组合治疗在拯救病人生命过程中延展当前生命支持装置(例如ICD)的能力,并提供更好的心脏再同步治疗用于心力衰竭。
在内部CPR模式的操作中,CRT-D 44首先检测到心室收缩的损失。在这一点处, CRT-D 44经由引线50发送节拍信号至控制器46,然后其促动控制器46中的泵以经由驱动线48脉动搏动装置42,来激活搏动装置42以开始提供“内部CPR”。更具体地,心室收缩的损失意味着没有心室节律被感测到和由此利用电装置44和搏动装置42促动同步节拍。
在响应中,CRT-D 44传输指令(以一个或多个信号的形式)至搏动装置42 (经由控制器46)以使其以稳定速率起搏。除了其它参数之外,该速率依赖于在设定非自主心室收缩情况中用于优化心脏输出量的转动速率、排量和辅助装置的类型。根据一个实施例,产生 80至120BPM的适当快速心跳的速率将提供适当的心脏输出。替换地,可使用有益于病人的任意速率。
在替换实施例中,代替CRT-D 44发送信号至控制器46 (该搏动装置44应开始内部CPR模式),系统可被操作于如上所述同步节拍模式中且控制器46或搏动装置42可感测其不再接收标准节拍信号。由于该信号损失,控制器46或搏动装置42可自动地促动装置 42以开始内部CPR模式。
在另一实施例中,CRT-D 44还可传输指令至搏动装置42以用特定膨胀体积起搏。 该体积可为有益于病人的任意体积。
同时,CRT-D 44开始已知的分层电疗程序以试图将心脏返回至正常运作中。换句话说,当CRT-D 44控制搏动装置42以提供机械搏动辅助形式的内部CPR给主动脉时, CRT-D 44还施加分层电疗以通过首先试图将心脏节拍返回至正常操作然后升高该处理最终至使心脏去纤颤,而试图将心脏返回至正常操作。应理解,节拍处理可包括突发节拍、抗心动过速节拍、或可刺激心脏返回至正常操作的任意节拍。还应理解,去纤颤处理包括放电去纤颤脉冲。在一个实施例中,放电脉冲通常被施加在上腔静脉引线(未示出)和右心室引线(未示出)之间或与位于上腔静脉和右心室中的去纤颤引线(未示出)和装置44之间的放电组合。替换地,任意已知的去纤颤处理可被使用。
在一替换应用中,CRT-D 44首先在激活搏动装置42以提供“内部CPR”治疗之前施加上述已知的分层治疗过程。即,代替只要心室收缩的损失被检测到就激活“内部CPR”, CRT-D 44首先尝试施加电疗(以调整节拍和/或去纤颤的形式)。
不管哪个疗法被首先施加,CRT-D 44继续操作搏动装置42以提供内部CPR,同时还继续监视心脏和提供分层电疗(根据需要包括去纤颤),直至心脏返回至正常运作。当心脏返回至正常运作时,CRT-D 44停止内部CPR且将系统返回至正常节拍-标准电节拍或同步节拍,该同步节拍将电疗和利用搏动装置42的机械辅助组合。
替换地,“内部CPR”模式可使用阻抗泵技术实施。阻抗泵技术,其也被称为“无阀泵”技术,涉及沿具有至少两段的管的长度流动(包括例如血液流动)的产生,每个段具有不同的阻抗。当管的顺从部分被压缩时,产生的波沿顺从部分的表面行进,且当波到达与具有不同阻抗的部分的交界处时,将存在至少部分的反射波。沿该管的重复压缩可建立正的方向性流动波。该技术在以下中有具体描述 Hickersonj Anna,〃An Experimental Analysisof the Characteristic Behaviors of an Impedance Pump,^CaliforniaInstitute of Technology,thesis (2005); 以及 Schuit,Ε·, "Valvelesslmpedance Pump Behavior,An Experimental Study, "National Universityof Singapore and Eindhoven University of Technology, internship (2007),其通过应用都被合并于此。
为了内部CPR模式的目的,当搏动装置42提供机械搏动辅助给主动脉时,血液流动被建立,由此导致顺从的主动脉振荡且产生血液的驻波。当血液流动至主动脉的非顺从段(例如年老或生病的病人的下行主动脉,其可比健康的主动脉更硬)时,可导致正血液流动。依赖于该移置的幅度和频率,临床显著的流动体积可被获得。根据一个实施例,驱动速率可为5-lOHz (或300至600BPM)。替换地,可产生血液流动的任意已知驱动速率可被使用。这样,根据一个应用,这里披露的用于内部CPR模式目的的搏动装置42实施例的使用可导致在病人心脏不跳动的情况下建立正血液流动。替换地,阻抗泵技术还可在与自主心跳不同步地操作时产生血液流动,由此在自然心跳上持续地增加流动。
在另一应用中,图2描述的系统40可操作于一模式中,该模式可称为“内部锻炼” 模式,其中系统40提供心脏增强处理,同时还同步地调节心脏节拍。更具体地,在该模式中,电装置44和搏动装置42以同步方式操作以有意地在心脏上建立压力或工作负荷,持续预定的“锻炼”时间段。在心脏治疗过程中,通过由电疗装置和/或搏动支持装置提供的辅助治疗,虚弱的心脏将变得明显地更强。还期望通过提供内部锻炼给心脏来进一步辅助恢复。该模式中的系统40可潜在地增强心脏至一点,其中心脏可不必如在心脏增强处理之前的那样依赖同步节拍处理。最后,在任意心脏辅助支持中的目的是要辅助病人恢复或使得病人过渡至移植物。如果病人被显示心肌恢复,内部心脏锻炼程序可为一方法,该方法用于确保心脏功能以受控和编程方式完全和全部地恢复。在一个实施例中,系统40操作于其同步节拍模式中,其结合循环心脏增强处理,该处理在预定时间表上重复。例如,在一个实施例中,心脏增强处理可每天执行一小时。替换地,该处理可被以确定有益于病人的任意预定时间表执行。
在内部锻炼模式的操作中,根据一个实施例,系统40初始操作于其同步节拍模式中。当操作于该模式中时,锻炼模式可被使用阻力实施。更具体地,通过控制电疗装置44和搏动装置42之间的正时,可建立对于收缩的小量阻力。在锻炼模式的一个实施例中,CRT-D 44或控制器46促动搏动装置42以比标准操作更晚地去膨胀-在左心室已经开始收缩和将血液压入主动脉后。较晚的去膨胀表示主动脉仍被压缩一时间段(其中装置42仍膨胀),由此提供对于血液通过右心室被压入主动脉的阻力。该抵抗性迫使左心室更强劲收缩以成功地将血液压入主动脉。换句话说,左心室必须“更努力工作”以使得相同量的血液进入主动脉。这样,由搏动装置42的更晚去膨胀建立的阻力导致心脏必须更努力工作以运作。在另一实施例中,代替较晚去膨胀,通过促动搏动装置42以去膨胀至部分体积(代替完全去膨胀),阻力被建立,导致在心脏输出过程中主动脉限流,类似于较晚去膨胀,迫使左心室“更努力工作”。
在内部锻炼模式的一个应用中,搏动装置42比在正常节拍过程中晚25ms去膨胀。 替换地,装置42比正常晚50ms去膨胀。在另一实施例中,装置比正常晚约IOms至约200ms 范围的任意量去膨胀。在一替换应用中,其中装置42去膨胀至部分体积,装置42去膨胀至其总体积的50%,持续预定时间段或心跳数。替换地,搏动装置42可去膨胀的范围为从其总体积的约10%至约90%的任意量,持续任意预定时间段。
根据内部锻炼模式的一个实施例,装置42每24小时操作于该模式中30分钟。替换地,装置42可操作于该内部锻炼模式中任意时间量且可以以任意期望的长度周期重复。 此外,内部锻炼模式的各个实施例可包括随时间增加的阻力。例如,在一个实施例中,阻力每循环增加一些量。在一个示例性实施例中,去膨胀在每循环中发生得晚5%。替换地,阻力可每其它周期增加或根据任意其它时间表。
在一个应用中,系统40追踪病人在锻炼模式过程中的响应。更具体地,CRT-D 44 感测锻炼模式过程中的心脏特性,例如经由心房引线和/或右心室引线。如果由装置44感测的心脏特性指示心脏受到该阻力的不利影响,CRT-D44将停止阻力的施加。
在各个替换实施例中,可设想具有不同构造的系统,其可执行所有上述操作模式。 例如,图3A描述了系统80,其具有搏动装置82和电疗装置84。在一个实施例中,电疗装置 84是CRT-D 84且搏动装置82是主动脉袖口 82。搏动装置82和电装置84都被联接至外部驱动器/控制器86。更具体地,搏动装置82经由驱动线88被联接至驱动器/控制器86 中的泵(未示出)。电装置84经由电引线90而被联接至驱动器/控制器86。
在图3A中所示的实施例中,驱动线88从搏动装置82延伸至” Y”形连接器92。 在”Y”形连接器92处,驱动线88被定位在内部装置联接电缆94中。电缆从”Y”形连接器 92延伸,穿过病人的切口 96,延伸至定位在病人外的第一连接器98。第一连接器98被可去除地联接至位于外部装置联接电缆102的一端处的第二连接器100,该电缆从第二连接器100延伸至驱动器/控制器86。在该构造中,驱动线88从搏动装置82延伸,穿过”Y”形连接器92,穿过切口 96,穿过第一连接器98和第二连接器100的连接部,且延伸至驱动器 /控制器86中的泵(未示出)。
如图3A和3B中最佳所示,电引线90从”Y”形连接器104延伸至”Y”形连接器 92Ζ ”形连接器104通过IS-I连接器106而被联接至电装置84。根据一个实施例,I”形连接器104是已知的’ ”形连接器,例如IS-IBif,其可从St. Jude Medical in St. Paul, MN 商业获得。在” Y”形连接器92处,引线90被定位在内部装置联接电缆94中。因此,引线 90在电缆94内延伸,穿过切口 96、穿过第一和第二连接器98、100的连接部,且延伸至驱动器/控制器86。
应注意,图2A和2B中描述的系统40与图3A和3B中描述的系统80之间的一个不同是并入到图3A和3B中的系统80中的” Y”形连接器104。根据一个实施例,” Y”形连接器104被包括在系统80中,以允许联接电装置84至控制器86,同时还保留左心室引线108。即,与其中左心室引线被从集线块64中的端口 64C去除以使得其可被连接器引线50 替换的图2A和2B中的系统40相反,” Y”形连接器104被用在图3A和3B中的系统80中以允许左心室引线108和连接器引线90 二者被联接至连接器头110。更具体地,” Y”形连接器104上的IS-I连接器106可被插入连接器头中的端口中,且左心室引线108和连接器引线90可被连接至如上所述且如图3A和3B所示的” Y”形连接器104,由此使得连接器引线90可被连接至装置84而不必去除左心室引线108。在另一替换实施例中,集线块可为如上所述的六端口集线块,其还允许左心室引线108和连接器引线90被连接至集线块。在一个实施例中,病人对于CRT心力衰竭治疗的响应可关联于确定是使用如图2A和2B提出的那样的实施例(其中连接器弓I线50被直接连接至集线块64且没有左心室引线)、如图3A和 3B中提出的那样的实施例(其中经由” Y”形连接器104的分叉连接供连接器引线90和左心室引线108 二者都联接至集线块110)、具有六端口集线块的实施例、还是某其它实施例。 应理解,附加的电感测和节拍引线,例如心房和右心室引线(未示出),也被以类似于图2A和 2B中所示的那样联接至集线块110。还应理解,那些引线的末端被定位在心脏中适当的位置。
在另一替换应用中,I”形连接器104可被联接至连接器弓I线90和右心室引线(未示出)(而非左心室引线108)。
在该实施例中,控制器86可与电疗装置84无线地通信。更具体地,控制器86具有无线收发器112,其可发送或接收来自装置84的信号。在一个实施例中,收发器112是射频(RF)收发器112,其可发送和接收RF信号。替换地,任意已知的无线技术可被使用。根据一个实施例,控制器86和电装置84可彼此进行关于系统的操作模式的通信。例如,在一个实施例中,用户可在控制器86处输入关于期望的模式的信息(例如通过促动按钮或其他促动部件)。控制器86然后可经由无线收发器112无线地发送关于期望的模式的信息至电装置86。在又一实施例中,在一个模式的操作过程中,装置84可发送关于该模式的操作的信息(例如,当控制器86应促动搏动装置82时)至控制器86。还应理解,系统80的通信能力可包括两个装置84、86之间任意适当信息的任意通信,其可有助于这里所述的任意模式的操作。
可并入系统80且可与控制器86无线地通信的一个示例性CRT-D装置84是上述的Medtronic,s Model D274TRK Concerto II CRT-D0 Concerto IICR1HHIiMRF Conexus telemetry 在 Medical Implant CommunicationService (MICS)波段中无线地通信。根据一个应用,该具体装置84可使用RF Conexus telemetry功能与控制器86无线地通信和交换在这里公开的任意实施例中所述的任意信息。
图4描述了系统120的另一实施例,其具有心室搏动装置122,以及电疗装置124。 在一个实施例中,电疗装置124是CRT-D 124且心室搏动装置122被定位在左心室周围。搏动装置122和电装置124都被联接至外部驱动器/控制器126。更具体地,搏动装置122经由驱动线128被联接至驱动器/控制器126中的泵(未示出)。电装置124经由连接器引线 130而被联接至驱动器/控制器126。
在图4中所示的实施例中,驱动线128从搏动装置122延伸至”Y”形连接器132。 在” Y”形连接器132处,驱动线128被定位在内部装置联接电缆134中。电缆从” Y”形连接器132延伸,穿过病人的切口 136,延伸至定位在病人外的第一连接器138。第一连接器138被可去除地联接至位于外部装置联接电缆142的一端处的第二连接器140,该电缆从第二连接器140延伸至驱动器/控制器126。在该构造中,驱动线128从搏动装置122延伸, 穿过”Y”形连接器132,穿过切口 136,穿过第一连接器138和第二连接器140的连接部,且延伸至驱动器/控制器26中的泵(未示出)。
此外,电引线130从电装置124延伸至”Y”形连接器132。在”Y”形连接器132处, 引线130被定位在内部装置联接电缆134中。因此,引线130在电缆134内延伸,穿过切口 136、穿过第一和第二连接器138、140的连接部,且延伸至驱动器/控制器126。
此外,包括例如右心室引线144的电感测和节拍引线被联接至电装置124。引线的末端被定位在心脏中适当的位置处。
在该实施例中,假定该实施例中的搏动装置122是心室搏动装置122,应理解,装置122的促动的正时应不同于上述主动脉袖口的实施例。更具体地,心室搏动装置122被膨胀以辅助收缩中的左心室以迫使血液进入主动脉(与上述的主动脉袖口实施例相反,该实施例中的主动脉袖口实际上去膨胀以辅助左心室将血液压入主动脉)。
在图4中描述的应用(以及在这里所述的和在图1-3B中描述的其它实施例)中,电疗装置124经由连接器引线130而被联接至控制器126。如上关于上述各个实施例所述,经由连接器引线130的该直接联接允许电装置124和控制器126 (以及搏动装置122)通信。 但是,在特定替换实施例中,不需要电装置至搏动系统的部件的这种直接联接。即,电装置 124和控制器126可通信而不直接连接。在这些实施例中,电装置124和控制器126可经由无线通信装置通信,例如已知的Medical Implant Communication Service (MICS)波段内的RF telemetry。由于处理延迟和电池限制,尽管技术装置中的无线通信通常不适于实时同步控制,应理解将来的能量源和通信速度会适用于实时控制。
在关于这里设想的系统(包括图1-4中描述的那些)的其他替换实施例中,控制器不是单独的装置。更具体地,在特定实施例中,控制器可位于电疗装置中。在其他实施例中, 控制器可位于机械心脏辅助装置中。
替换的组合系统实施例(具有电疗装置和机械心脏辅助装置二者)还可包括其中电疗装置没有感测引线的实施例。即,在这种应用中,代替感测引线,电疗装置具有传感器, 其可感测心脏特性而不位于心脏中或附近。例如,在一个实施例中,传感器是感测部件,其不是引线且被构造为感测心脏特性。根据一个应用,传感器是物理地并入电疗装置的传感器。
在组合系统的其他替换应用中,电疗装置不具有节拍引线。即,在这种应用中, 代替节拍引线,电疗装置具有节拍部件,其可刺激心脏或调节心脏节拍而不位于心脏中或附近。在一个实施例中,节拍部件是无引线心脏刺激部件,例如题为“Leadless Cardiac Stimulation Systems”的美国公开申请2008/0109054中公开的,其通过引用全部合并于此。
尽管这里披露的各个实施例已被关于优选实施例进行了描述,本领域技术人员应认识到,可进行形式和细节的改变而不偏离本发明的精神和范围。


这里公开的各个实施例涉及包括电疗装置和机械心脏辅助装置二者的组合心脏辅助系统、方法和装置。各个操作模式可被利用这些实施例应用,包括同步节拍模式、内部CPR模式和内部锻炼模式。



查看更多专利详情