早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

热结合的织物及其制造方法

  • 专利名称
    热结合的织物及其制造方法
  • 发明者
  • 公开日
  • 申请日期
  • 优先权日
  • 申请人
  • 文档编号
  • 关键字
  • 技术领域
    本发明涉及一种制自聚烯烃聚合物的无纺织物及此种织物的制造方法
  • 背景技术
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:热结合的织物及其制造方法纤维所制成的织物包括编织和无纺织物两种。无纺织物是用于包括医院院袍、尿布衬里、和卫生用抹布等卫生和医学上的用途。今已有许多制造结合式无纺织物的程序。举例而言,无纺织布,可使通过或一面或两面上可能具有凸纹和凹纹的样式而经加热的滚压轮间的夹隙,通过施加热和压力,使在其有限的区域处相结合。在此结合期间,依据构成该无纺织布的纤维的类型,该结合区域可使自生地形成,也就是说,该织布的纤维至少在该样式区域处使其熔化而相熔合,或者可通过加入一黏接剂而熔合。这些结合式无纺织物的优点包括低能量成本和生产的速度。无纺织布亦可由几种其它的方法制成,例如,纺花边(spunlacing)或水力缠绕(entangling)(如美国专利编号第3,485,706号和美国专利编号第4,939,016号所揭示);通过用梳理及热结合人造短纤维;通过在一连续操作中纺结合连续性纤维;或通过将纤维熔吹成织物并随即压延或热结合所成的织布。无纺织布的各种性质,决定了不同应用的无纺织物的适合性。无纺织布可被策划使具有适合不同需要的不同性质组合。无纺织布的可变性质,包括类似润湿性、散布性、和吸收性等液体保存性质、类似抗张强度和撕裂强度等强度性质、柔软性质、类似耐磨强度等耐久性质、和美学上的性质。聚丙烯由于其成本、高强度和易处理性,已成为无纺布的主要聚合物。然而,聚丙烯无纺布,通常不具有柔软性、棉花似的触感。就此而论,聚乙烯无纺布得到了关注。聚乙烯可产生较柔软的织物,但具有相当低的抗张强度和耐磨强度。虽然那些类似液体保存性质、强度性质、柔软性质、和耐久性质等无纺织物性质,通常在无纺织物的设计上最为重要,但那些无纺织物的外观和触感,对那些形成产品的外露部分的无纺织物,也是特别重要。举例而言,那些无纺织物产品的外覆层,经常希望能具有一布似的触感和一惬意的装饰性设计。纵然本领域已有以上所述的进步,无纺织物的改良及其制造方法仍然是特别需要。特言之,无纺织物需要有改良的强度性质、伸长率、耐磨强度、抗弯刚度、和/或柔软度。发明概述本发明的实施例可通过本发明的一个或以上的特征符合上述的需要。在一个特征中,本发明涉及一种具有增加的张力强度、伸长率、耐磨强度、抗弯刚度、和/或柔软度的无纺织物的方法。此方法包括使一纤维织布通过一对滚筒,以得到具有高百分比结合面积的热结合式织物。此高百分比的结合面积是由其至少一滚筒上面的浮雕样式所形成。此浮雕样式具有高百分比的结合点区域和/或宽的结合点角度。在某些实施例中,该织物的结合面积的百分比为至少约16百分比左右、至少约20百分比左右、或至少约24百分比左右,其结合点角度系约20°或以上、约35°或以上、约37°或以上、约42°或以上、或者约46°或以上。该浮雕样式,具有每平方米至少约1.55×105个结合点、每平方米至少约2.31×105个结合点、每平方米至少约3.1×105个结合点、每平方米至少约3.44×105个结合点、每平方米至少约4.6×105个结合点、或者每平方米至少约4.65×105个结合点。其纤维织布可以含有聚乙烯,其可能为乙烯的同聚物,或乙烯和共聚单体的共聚物。此聚乙烯可在一单部位催化剂的存在下得到,诸如金属茂催化剂,或一局限性几何结构型催化剂。
在另一方面,本发明涉及一种以此说明书所说明的方法制成的无纺织物。此无纺织物含有一聚合物,以及具有高百分比的结合面积和高耐磨强度的特性。在某些实施例中,该聚合物为聚乙烯,其可为乙烯的同聚物,或乙烯和共聚单体的共聚物。此聚乙烯可在一单部位催化剂的存在下得到,诸如一金属茂催化剂或一局限性几何结构型催化剂。在其它实施例中,该织物的结合面积的百分比为至少约16百分比左右、至少约20百分比左右、或至少约24百分比左右。
本发明诸实施例所提供的本发明的各种特征和优点,可由下文的说明而更明确。


第1图是本发明的实施例中用来生产织物的程序的简图;第2A图是一可说明该结合点的安排的雕花滚筒的片段正视图;第2B图是第2A图的程序所生产的无纺织物和第2A图的雕花滚筒的简图;第3A-3I图是本发明的实施例中所用而以任意尺度表示的结合样式的示意图;第4A-4I图是第3A-3I图中的结合样式就实施例1中所用的PE1树脂所生产的无纺织物的显微相片;第5图是第3A-3I图中的结合样式就PE1树脂所生产的织物有关正规化峰值负载对温度的曲线图;第6图是第3A-3I图中的结合样式就实施例1中所用的PEE树脂所生产的织物有关百分比伸长率对温度的曲线图;第7图是实施例1中所生产的三种织物有关的典型应力-应变曲线的曲线图;第8图是第3A-3I图中的结合样式就PE1树脂所生产的织物有关耐磨强度对温度的曲线图;第9图是第3A-3I图中的结合样式就PE1树脂所生产的织物有关抗弯刚度对温度的曲线图;第10A-10I图是第3A-3I图中的结合样式就PE1树脂所生产的无纺织物的结合点在80X的放大倍率下的扫描电子显微相片;第11A-11C图是第3A-3I图中的结合样式就各种树脂所生产的无纺织物的抗张张力测试破裂部位的扫描式电子显微相片;而第12A-12B图则是第3A-3I图中的结合样式就各种树脂所生产的无纺织物的已磨损结合部位的扫描式电子显微相片。

本发明的实施例,可提供一种可通过热结合生产无纺织物的方法。此织物具有一高百分比的结合面积,它是通过使纤维织布通过一对滚筒而产生,其中至少有一个滚筒具有一附有高百分比的结合点区域加上宽的结合点角度的浮雕样式。
本说明书中所用术语“无纺布”,系指某种织布或织物,其具有一被随机交织但不在如编织织物有关情况的一种可辨识方式中的个别纤维或纱线结构。本说明书中所用的术语“结合”,系指施加强力或压力(与需要或用以牵引纤维使小于或等于50丹尼尔者分开或加成)以使熔融或软化的纤维熔合在一起,而造成一大于或等于1,500克的结合强度。本说明书中所用术语“热结合”,系指对那些纤维再加热并施加强力或压力(与所需要或用以牵引纤维使小于或等于50丹尼尔者分开或加成),以使纤维熔融或熔合,而造成一大于或等于2,000克的结合强度。那些在一个单一或同步操作中,或在任一卷布滚筒(举例而言,一导丝滚筒)牵引及使纤维熔合在一起的操作,例如纺结合,并不被视为一热结合操作。
一用以生产无纺织物有关的热结合程序,系说明在第1图中。这样的程序或其变更形式,举例而言,在下列的美国专利编号有说明第5,888,438;5,851,935;5,733,646;5,654,088;5,629,080;5,494,736;4,770,925;4,635,073;4,631,933;4,564,553;4,315,965号中,那些是通过参照而将那些全文合并进本说明书中。所有这些揭示的方法,可加修饰或不加修饰地被使用在本发明的实施例中。
参照第1图,一织布形成系统10,诸如一梳理系统,系被采用来最初形成一纤维织布12。该纤维如箭头13所指,主要是对齐于织布形成的机器方向。此织布12系导经一预热站14。此预热的织物,接着使其传递至一通过对立滚筒20和22所提供的结合站的压力夹隙。滚筒20系一金属雕花滚筒,以及系加热至一大于该纤维的熔点的温度。其支持滚筒22(即光滑的滚筒),系在一受控的方式下,被加热至低于纤维的熔点的温度,最好是低于该纤维的粘着点。其结合操作可在其预热表面18上面,形成一高百分比的粘着结合,而使那些在其对立的表面25上面所形成的自生结合,大部份为仅部份延伸过织布厚度的熔融结合。
第2A图中所说明的雕花滚筒包含一些与一平坦滚筒紧密压缩接触的区域,即结合点。这些区域可诱发熔融,以及可建立一些黏着区域。这些区域的尺度,决定了一单一点处所结合的纤维数目,和该织物所包含非纤维式完整性的总面积。其连接至一结合点的纤维数目,会影响到其总强度,但亦有助于其总刚度。一浮雕样式有三项因素会影响无纺织物的总性质。它们包括结合面积、结合点或侧壁角以及通常表为每平方单元面积的点数的结合点浓度。
该滚筒上面的雕花样式是通过那些结合点产生出的。这些点自该雕花滚筒延伸出,以及在与该平坦滚筒接触时,可产生一结合的区域。该结合点通常可在无纺织物上面产生一如第2B图所见的样式。一浮雕样式的结合点,通常系以每平方面积的结合点来表示。在一优选的实施方案中,其浮雕样式是具有每平方米约1.55×105个结合点(每平方寸100个结合点),最好每平方米约2.31×105个结合点(每平方寸149个结合点),更好的是每平方米约3.10×105个结合点(每平方寸200个结合点),或者每平方米约3.44×105个结合点(每平方寸222个结合点),或者每平方米约4.60×105个结合点(每平方寸297个结合点),或者每平方米约4.65×105个结合点(每平方寸300个结合点)。每平方米更多的结合点,诸如5.42×105、6.20×105、7.75×105、9.30×105、或更多,(每平方寸,诸如350、400、500、600、或更多)亦属可行。
该结合点是通过一结合点角度和结合面积做成。参照第3A-I图,所示为各种结合点样式的不同结合点角度和结合面积。其结合点角度涉及其结合点自该雕花滚筒延伸之处的角度。其结合点角度系大约20°或以上,最好大约35°或以上,更好的是大约37°或以上,再好的是大约42°或以上,以及尤其好的是大约46°或以上。第3A图是有关结合样式1,其具有一46°角度、20百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)。和点宽度7.62×10-4m(0.03寸)。第3B图是有关结合样式2,其具有一20°角度、16百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.86×10-4m(0.027寸)。第3C图是关于结合样式3,其具有一20°角度、24百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度8.38×10.4m(0.033寸)。第3D图是关于结合样式4,其具有一20°角度、20百分比的结合面积、2.31×105pts/m2(149pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度9.30×10-4m(0.0366寸)。第3E图是关于结合样式5,其具有一20°角度、20百分比的结合区域、4.60×105pts/m2(297pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.60×10-4m(0.026寸)。第3F图是关于结合样式6,其具有一42°角度、16百分比的结合面积、3.44×10pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.86×10-4m(0.027寸)。第3G图是关于结合样式7,其具有一37°角度、24百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度8.38×10-4m(0.033寸)。第3H图是关于结合样式8,其具有一46°角度、20百分比结合面积、2.31×105pts/m2(149pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度9.3×10-4m(0.0366寸)。第3I图是关于结合样式9,其具有一35°角度、20百分比的结合面积、4.60×105pts/m2(297pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.60×10-4m(0.026寸)。
那些结合区域和未结合区域,将构成上述的无纺织物。那些结合区域可被界定为上述无纺织物为该结合区域所产生的结合所覆盖的表面面积的百分比。本发明的实施例中的结合面积,优选的是至少16百分比,更优选的是至少20百分比,以及尤其好的是至少24百分比、30百分比、35百分比、40百分比、45百分比、50百分比或以上。纤维和无纺织物的制造织布形成系统通常包括一些可用以产生那些可被热结合以形成织物的纤维而包括干捻、湿捻、和聚合物捻、或任何其它程序等程序。在某些实施例中,该纤维是通过纺结合、熔吹、或梳毛过的切段纤维等程序而产生。该程序系进一步说明于下列的美国专利编号第3,338,992;3,341,394;3,276,944;3,502,538;3,978,185;和4,644,045号中,那些全文是通过参照而合并进本说明书内。通常,该纺结合处理系使用高动力真空室来增加纤维的速度,藉以降低纤维的直径,而产生一连续性纤维。该熔吹程序系自上至下吹入空气,以及使用表面力将该纤维拖曳至较高的速度,以产生极低丹尼尔的非连续性纤维。
那些传统式纺结合程序,系说明在美国专利编号第3,825,379;4,813,8644,405,297;4,208,366;和4,334,340号中,那些全部是通过参照而合并进本说明书内。该纺结合程序,系知名于织物生产技艺中。通常,那些连续性纤维系使挤出,被放置在一循环皮带上面,以及接着使彼此相结合,以及经常有时候系使至一类似一熔吹层等的第二层,其经常是通过一热压延滚筒,或填加一黏合剂。一纺结合的概观,可得自于田纳西州,诺克斯维尔市,田纳西州大学的The Textiles andNonwovens Development Center(下文称做“TANPEC”)(纺织品和无纺布开发中心)所赞助,1990年七月30日至八月3日的第八年度无纺布研讨会议事录中L.c.Wadsworth和B.C.Goswami的无纺织物“Spunbonded andMelt Blown Processs”(纺结合和熔吹程序)。
术语“熔吹”在本明书内用以论及一些纤维,那些在形成上系使一熔融热塑性聚合物成份,挤压经过多数纤细通常为圆形的板牙毛细管,而以一些熔融的纱线或细丝,使进入一收敛的高速气流(例如,空气),其功能可使该纱线或细丝减细至缩小的直径。此后,这些细丝或纱线,系被该高速气流带送,以及淀积在一收集表面上面,以形成一随机散置而平均直径通常小于10微米的熔吹纤维的织布。
术语“纺结合”在本明书内是用以论及一些纤维,那些在形成上使一熔融热塑性聚合物成份,挤压经过具有被挤出细丝的直径然后急剧缩小的纺丝头的多数纤细而通常为圆形的板牙毛细管,以及其后使这些细丝淀积在一收集表面上面,以形成一随机散置而平均直径通常在大约7与大约30微米间的熔吹纤维的织布。
那些无纺布可通过许多方法来产生。大部份的方法大体上包括相同的基本程序(1)物料选择;(2)织布形成;(3)织物固结;和(4)织布完成。物料选择可提供适合其应用的性质。该织布是通过所选物料的纤维来形成。该织布接着会结合以形成织物,此织物可加以处理,以产生可供裁剪及折叠用的最后产品。
纤维的直径会影响到其织物包括强度和抗弯刚度等性质。那些纤维的直径,可在多种的方式中被测量及纪录。通常,纤维直径系以每长丝的丹尼尔来做测量。丹尼尔系一纺织术语,其系被界定为每9000米的纤维长度的纤维克数。单丝通常涉及一具有每单丝大于15丹尼尔的挤出绞线,通常系大于30。细丹尼尔纤维通常涉及一具有大约15或以下的纤维。微丹尼尔(亦即,微纤维)通常论及一具有不大于100微米的纤维。就本说明书所公开的纤维而言,其直径可有广泛的变化,而对纤维弹性的冲击不大。然而,其纤维丹尼尔可做调整,以适合其处理成品等的接受能力,或者最好是就熔吹而言每长丝自大约0.5至大约30的丹尼尔;就纺结合而言每长丝自大约1至大约30的丹尼尔;和连续卷绕细丝每长丝自大约1至大约20,000的丹尼尔。
纤维直径的丹尼尔,可依据下列的方程式被转换成米 其它会影响到织物的最后纤维性质包括纤维定向、晶性,直径、和冷却速率。其结合强度是无纺织物强度的一项限制因素。较低的纤维定向,可容许在结合期间有较大的熔融量,而造成较强的结合区域。此外,牵引一聚合物所引发的高量定向,将会在热结合期间,造成高量的收缩,而使得其处理能力有困难。
一纤维的结晶部份,对所发生的熔融所致的热结合程序系特别重要。其熔融和流动的程度,系显著地冲击到其结合强度。其较不稳定的结晶体将会首先熔融;若有足够的热量传递给该聚合物,接着便会是较稳定或已定向的结晶体。此短期间至其结合区域的热传递,将仅有一部分的结晶体会熔融。
在织布已松散地形成后,该个别的纤维需要被结合在一起。织物固结可提供强度和刚度给该织物。那些固结织布的方式包括机械式、化学式和热结合式。机械式固结是通过在织布的各个点处缠绕纤维来完成,包括针打、针脚式接合法、纺花边或任何其它机械固结程序。化学式结合系涉及以一类似乳胶等黏合剂喷雾或浸透织布。织布的热结合是普通的结合技术,包括点压延、超声和辐射热结合。在某些实施例中,使用点压延结合,点压延结合包括使织布通过两个紧密接触的热滚筒。其中一个滚筒是做阳图样浮雕,以及另一个滚筒则是一平坦滚筒。该纤维使熔融并流动至彼此的上面。于冷却时,其织物便算形成。
当一纤维的织物被拉进压延机时,将会发生许多不同规模的热力程序。这些程序包括传导式热传递;热变形;熔融聚合物的流动;扩散;和克拉珀龙效应。
传导式热传递系传输横过钢材滚筒、织物界面。传导所传递的热量与钢材滚筒的温度成正比,和织布耗费在结合针点下的时间量(滚筒速度)。而且,加至其系统的热量其变形的热量。由于该钢材滚筒间的高压力,该织布将会极迅速地形成一不同的形状,以及在此系统上面完成机械功。此机械功将会转变成热量。此两形式的热量,将会升高该滚筒间的织布温度,以及在其结合针点下最高。假设所有的机械功均转移成热量的方程式系得自[F(s)ds]α=VρCPΔT+fΔHfXρV其中,F(s)ds是在一段距离ds中施加至织布上面的力量。α是转换成热量的机械功分量,V系织布容量,X系其晶性,以及f系结晶体熔融的分量。其右侧的第一项,是其用以增加温度的热量,以及其第二项是叙述其熔融聚合物结晶体的热量。
当其温度达至其熔点时,该结合针点下的高压,将会使得此熔融体,向外流至一较低压力的区域。而且,在熔融状态时,该聚合物将会自我扩散。在离开该压延滚筒时,该熔融体将会固化,以及将会机械地使该纤维锁定在其结合点处。此两现象会使几条纤维在一结合点处熔合在一起,以及会将该织布转变成一织物。那些聚合物在结合程序期间有关的扩散渗透距离,系几乎可被忽略。其渗透距离系得自R=[t(2×D)]?其中,R系渗透距离,t系时间,以及D系其自我扩散系数。通常,大部份聚合物为具有一大小为10-15的扩散系数,以及在该结合针点下将耗费10至40毫秒。使用这些概数,其将可计算出其渗透距离系仅在45?与100?之间。考虑大部份用于热结合中的纤维,其直径大约为20微米,该纤维仅仅扩散那些总直径的0.00000225百分比。所以,其聚合物熔融体在结合区域中围绕纤维的机械联锁,有可能是在其结合点处保持该纤维在一起的支配力量。
此结合针点下增加的压力,将会导致另外已知为克拉珀龙效应的熔融温度中的增加。压力效应使聚丙烯熔点的增加为38K/kbar或0.38℃/Mpa。使用一结合点下的典型压力,聚丙烯的熔点,将会增加大约10℃。聚乙烯的熔融温度,在典型的结合压力下,将会增加大约5℃。
上述点结合热压延程序的几项因素,将会影响到那些最后的纤维性质,其中包括温度、压力、速度、滚筒直径、和浮雕样式。温度的选择主要系其物料的函数,但理应注意的是,其传递至织布的总能量,系温度、压力、滚筒直径、和线速度的一函数。若其温度选择过低,则该织布将结合不足,因此其织物的强度将很弱。若该滚筒温度过高,则该织布将结合过度,因此其所成的织物将会太硬,或者该织布将会完全熔融,而黏着至该滚筒。
其施加至织物的压力的效应系很小,但不可被忽略。在低压力下,织布的结合很差,因而其强度很差。当压力增加时,该织物的强度是结合温度和压力的函数。在极高的压力下,虽然织物强度会达到一最大值,以及接着会随着压力的增加而开始降低。低于此一压力,其强度将会继续向上增加,而至该聚合物的熔点。
该结合滚筒的速度和直径,将会影响到热传递至织布的总时间。较大的结合滚筒直径,可容许比那些较小滚筒更紧密地接触该热滚筒。因此,其将会有较多的热量传递至织布。在相同的方式中,缓慢旋转的滚筒,将较快速旋转的滚筒,具有较少的接触时间。
一织物耗费在该夹隙(紧密接触区域)内的时间量,可被表达为t=AC01/2R1/2V1t=时间R=结合滚筒7半径V=结合滚筒的速度A=CO-CnCo+CR-CnCo]]>其中,Co为原来的织物厚度,CN系为该结合滚筒间的厚度,以及CR为在该结合滚筒中压缩后的厚度。
该纤维的外形并不受限制,以及可为任何适当的外形。举例而言,典型的纤维系具有一圆形横截面,但有时候那些纤维系具有不同的外形,诸如,一三叶形的外形。或一平坦(亦即,“条带”状)外形。
在热结合式织物已经自该结合针点脱出后,该结合区域将会发生冷却和固化。该织物及更明确地该结合区域的淬火速度,可能会冲击到其最后的织物性质。
那些重要的织物性质包括强度、伸长率、峰值负荷、耐磨强度、和抗弯刚度。无纺织物的强度或韧性和伸长率,对其后生产程序和消费者两者均很重要,一织物具有愈大的强度和弹性,其便可愈快与其它物料结合成一最后的消费产品。无纺织物的另一性质,系其抗磨损的能力。当一粗糙表面施加至无纺织物时,那些纤维将会自该表面被拉出,以及使该表面上面形成细毛或毛球。就此而论,高耐磨强度就无纺织物而言系有利的。人类所穿戴及贴进皮肤的物料的另一重要性质是其硬度。该性质可通过抗弯刚度或触摸评估来做测量。纤维成形聚合物任何纤维成形聚合物,特别是那些可做热结合的纤维成形聚合物,可被用于本发明的实施例。举例而言,那些适当的聚合物包括,但无限制意,α-聚烯烃均聚物和互聚物,那些包括聚丙烯、丙烯/C4-C20的α-聚烯烃共聚物、聚乙烯、和乙烯/C3-C20的α-聚烯烃共聚物,该互聚物可为不均一乙烯/α-聚烯烃互聚物,或为均一乙烯/α-聚烯烃互聚物,那些包括大体上线性乙烯/α-聚烯烃互聚物。所包括尚有那些具有12至20个碳原子且包含偶极团的脂肪族α-聚烯烃互聚物。那些可将偶极团导入聚合物内的适当脂肪族α-聚烯烃单体举例而言,包括类似丙烯酸氰化物、异丁烯酸氰化物、乙基丙烯酸氰化物等等的乙烯基不饱和氰化物;类似马来酐等不饱和无水化物;类似丙烯酰胺、异丁烯酰胺等等的乙烯基不饱和胺;类似丙烯酸、异丁烯酸等等的乙烯基不饱和羧酸(单和双官能基);类似异丁烯酸甲酯、丙烯酸乙酯、羟基乙基丙烯酸酯、n-丁基丙烯酸酯或异丁烯酸酯、2-乙基-己基丙烯酸酯、或乙烯-醋酸乙烯酯共聚物等等的乙烯基不饱和羧酸的酯类(特别是较低级,例如C1-C6,的烷基酯);类似N-烷基或N-芳香基马来酰亚胺、类似N-苯基马来酰亚胺等等的乙烯基不饱和二羧酸亚胺。这些包括偶极团的单体,最好为丙烯酸、醋酸乙烯酯、乙酸乙烯酯、马来酐和丙烯酸氰化物。该出自脂肪族α-聚烯烃单体的聚合物可包含的卤素群,包括氟、氯和溴;这些聚合物最好为一些氯化的聚乙烯(CPE)。那些类似聚酯和尼龙等聚合物,亦可被使用。
那些不均一互聚物与均一互聚物的区别之处在于,后者中大体上所有的互聚物分子,在其互聚物内,具有相同的乙烯/共聚单体比率,而不均一互聚物是那些互聚物分子并不具有相同的乙烯/共聚单体比率者。术语“宽广组合物分布”,本说明书中系用以说明不均一互聚物有关的共聚单体分布,意指那些不均一互聚物具有一“线性”分量,以及该不均一互聚物具有通过DSC测得的多重熔融峰值(亦即,呈现至少两个不同的熔融峰值)。该不均一互聚物,在大约10百分比(重量比)或以上内,最好的是大于15百分比(重量比)内,更好的是大于20百分比(重量比)内,具有一小于或等于2甲基/1000碳的支键度。该不均一互聚物,在大约25百分比(重量比)或以下内,最好的是小于15百分比(重量比)内,更好的是小于10百分比(重量比)内,具有一等于或大于25甲基/1000碳的支键度。
其不均一聚合物组合物,可为一最好是聚乙烯或聚丙烯的α-聚烯烃均聚物,或者更好是一具有至少一C3-C20的α-聚烯烃和/或C4-C18二烯的乙烯互聚物。乙烯与丙烯、1-丁烯、1-己烯、4-甲基-1戊烯、和1-辛烯的不均一共聚物是特别好的。
线性低密度聚乙烯(LLDPE)是在一溶液或一流体床程序中生产的。其聚合作用属催化反应。齐格勒纳塔和单部位金属茂催化剂系统一直被用来产生LLDPE。其所成的聚合物,在特性上具有一基本上呈线性的骨架。通过合并进其他线性聚合物骨架的共聚单体的水平控制密度。各种α-聚烯烃,典型地与乙烯共聚化以产生LLDPE。该最好具有四至八个碳原子的α-聚烯烃,存在于该聚合物中的量高达大约10重量百分比。其最典型的共聚单体是丁烯、己烯,4-甲基-1-戊烯和辛烯。该共聚单体将会影响到其聚合物的密度。LLDPE有关的密度范围相当宽广,典型地系自0.87-0.95g/cc(ASTM D-792)。
线型低密度聚乙烯熔融指数也受控于一类似氢或一授氢体等链终止剂的导入。一线性低密度聚乙烯有关依据ASTM D-1238条件190℃/2.16kg(昔日知名为“条件E”以及亦知名为“I2”)测得的熔融指数,范围可宽广自大约0.1至大约150g/10min。就本发明的目地而言,该LLDPE具有的熔融指数,就纺结合的细丝而言应大于10,以及好是15或更大。特别佳的LLDPE聚合物,系具有一0.90至0.945g/cc的密度,和一大于25的熔融指数。
商业上现有适当的线型低密度聚乙烯聚合物的实施例包括美国陶氏化学公司所售的线型低密度聚乙烯聚合物,诸如ASPUNTM系列的纤维级树脂,Dow LLDPE 2500(55 MI,0.923密度),Dow LLDPE类型6808A(36 M1,0.940密度),和Exxon化学公司所售的EXACTTM系列的低密度聚乙烯聚合物,诸如EXACTTM2003(31 M1,密度0.921)。
该均一聚合物组合物,可为一最好是聚乙烯或聚丙烯的α-聚烯烃均聚物,或者更好是一具有至少一C3-C20的α-聚烯烃和/或C4-C18二烯的乙烯互聚物。乙烯与丙烯、1-丁烯、1-己烯、4-甲基-1戊烯、和1-辛烯的均一共聚物系特别佳。
近期引进乙烯/α-聚烯烃聚合化作用所需的金属茂基催化剂已经导致新乙烯互聚物,已知称为均一互聚物的产生。
该可用以形成本说明书中所说明的纤维的均一互聚物具有一些均一支键分布。亦即,该聚合物系其中的共聚单体随机地分布在一给定的互聚物分子内和其中大体上所有的互聚物分子在该互聚物内具有相同的乙烯/共聚单体比率者。该聚合物的同构型,典型上是通过SCBDI(短链分支分布指数)或CDB1(组合物分布分支指数)来加以说明,以及界定为该具有一在50百分比的中值总摩尔共聚单体内容物内的共聚单体内容物的聚合物分子的重量百分比。一聚合物的CPBI,可自本技艺已知技术所得的资料而轻易计算出,举例而言,诚如Wild等人,在PolymerScience,Poly.Phys.Ed.,第20卷第441页(1982)中,在美国专利编号第4,798,081号中所说明,或如USP 5,008,204中所说明所举为例的温度上升洗出分馏法(本说明书将缩写成“TREF”),那些揭示内容,是通过参照而合并进本说明书内。其计算CDBI的技术,系说明在USP5,322,728中,以及在USP 5,246,783中,或在美国专利编号第5,089,321号中,那些所有的揭示内容,是通过参照而合并进本说明书内。本发明中所用有关均一互聚物的SCBDI或CDB1,最好系大于大约30百分比,特别是大于大约50百分比、70百分比、或90百分比。
本发明中所用的均一互聚物,基本上系缺乏一如同TREF技术测得的可测量“高密度”分量(亦即,该均一乙烯/α-聚烯烃互聚物,并不包含一具有分支度小于或等于2甲基/1000碳原子的聚合物分量)。该均一互聚物,亦不包含任何高度短的链分支分量(亦即,那些并不包含一具有分支度等于或大于30甲基/1000碳原子的聚合物分量)。
该大体上呈线性的乙烯/α-聚烯烃聚合物和互聚物,亦系均一互聚物,但在本说明书中系进一步如美国专利编号第5,272,236号和美国专利编号第5,272,872号中所界定,其全部内容是通过参照而合并进本说明书内。然而,这些聚合物系独特的,其系归因于那些优异的可处理性和独特的流变性质和高熔融弹性和对熔融破裂抗耐性。这些聚合物可使用该限定几何结构的金属茂催化剂系统,在一连续聚合化程序中成功地被制备。
术语“大体呈线性”的乙烯/α-聚烯烃互聚物意指其聚合物骨架被大约0.01长链分支/1000碳原子至大约3长链分支/1000碳原子、优选的是自大约0.01长链分支/1000碳原子至约1链分支/1000碳原子、以及特别是自大约0.05长链分支/1000碳原子至大约1长链分支/1000碳原子取代。
长链分支在本说明书中被界定为一链长度系该共聚单体内的总碳原子减两个碳原子的至少多一个碳原子,举例而言,一大体呈线性的乙烯/辛烯的乙烯互聚物的长链分支,为至少七个(7)碳原子长(亦即,8个碳原子减去2个等于6个碳原子加上一个等于七个碳原子长链分支长度)。该长链分支可长至长度大约与其聚合物的骨架的长度相同。长链分支系使用13C核磁共振(NMR)分光仪来加以决定,以及系使用兰德尔方法来定量(Macromol.Chem.Phys.,C29(2&3),第285-297页),那些揭示内容是通过参照而合并进本说明书内。当然,长链分支要与短链分支相区别,后者单独地因合并共聚单体而成,以使举例而言一大体呈线性的乙烯/辛烯聚合物的短链分支,系六个碳原子长,而其相同的聚合物的长链分支,系至少七个碳原子长。
其它适当的聚合物,公开在下列的美国专利编号中6,316,549;6,281,289;6,248,851;6,194,532;6,190,768;6,140,442;6,037,048;5,603,888;5,185,199和5,133,917,所有那些是通过参照而将那些全文合并进本说明书内。
商用纤维成形聚乙烯的实施例包括ASPUNTM6806A(熔融指数105.0g/10min;密度0.930g/cc),ASPUNTM6842A(熔融指数30.0g/10min;密度0.955g/cc),ASPUNTM6811A(熔融指数27.0g/10min;密度0.941g/cc),ASPUNTM6830A(熔融指数18.0g/10min;密度0.930g/cc),ASPUNTM6831A(熔融指数150.0g/10min;密度0.930g/cc),和ASPUNTM8635A(熔融指数17.0g/10min;密度0.950g/cc),所有均是通过密歇根州米德兰市的美国陶氏化学公司所售。这些线性低密度聚乙烯,可与一均一大体呈线性的乙烯聚合物相混合,诸如美国陶氏化学公司所售的AFFINITYTM树脂。
商用纤维成形聚丙烯的实施例包括指名为5A10的共聚丙烯(熔融流动率1.4g/10min;挠曲模量1585MPa(230,000psi));5A28(熔融流动率3.0g/10min;挠曲模量1585MPa(230,000psi));5A66V(熔融流动率4.6g/10min;挠曲模量1654MPa(240,000psi));5E17V(熔融流动率20.0g/10min;挠曲模量1344MPa(195,000psi));SE40(熔融流动率9.6g/10min;挠曲模量1378MPa(200,000psi));NRD5-1258(熔融流动率100.0g/10min;挠曲模量1318MPa(191,300psi));NRD5-1465(熔融流动率20.0g/10min;挠曲模量1344MPa(195,500psi));NRD5-1502(熔融流动率1.6g/10min;挠曲模量1347MPa(195,500psi));NRD5-1569(熔融流动率4.2g/10min;挠曲模量1378MPa(200,000psi));NRDS-1602(熔融流动率40.0g/10min;挠曲模量1172MPa(170,000psi));SRD5-1572(熔融流动率38.0g/10min;挠曲模量1298MPa(188,400psi));SRD5-1258(熔融流动率25.0g/JOmin),和INSPIRETM树脂(熔融流动率范围自1.8至大约25g/10min),所有均是通过美国陶氏化学公司所售。其熔融流动率系根据ASTMD1238(230℃/2.16kg)来加以测量,以及其挠曲模量系根据ASTMD 790A来加以测量。理应了解的是,那些出自其它公司的树脂,诸如Exxon、Bassel、Mitsui、等等,亦可加以使用。
那些类似抗氧化剂(例如,类似Ciba Geigy所供应的1RGANOXTM1010或1RGANOXTM1076的阻碍式酚醛塑料)、亚磷酸盐(例如,亦CibaGeigy所供应的1RGAFOSTM168)、粘着添加物(例如,PIB)、颜料、着色剂、填料等等的添加物,亦可被包含在本说明书所公开的纤维材料中。
同理,本说明书所公开的聚合物,可掺合其它聚合物,以修饰那些类似弹性、易处理性、强度、热结合性、或黏附力等特性,使这些修饰不致不良地影响到其所希望的性质的范围。
某些可用以修饰此聚合物的有用材料包括,其它大体呈线性的乙烯聚合物加上其它聚烯烃,诸如高压低密度乙烯均聚物(LDPE)、乙烯-醋酸乙烯酯共聚物(EVA)、乙烯-羧酸酯共聚物、乙烯丙烯酸酯共聚物、聚丁烯(PB)、包括高密度聚乙烯(HDPE)、中密度聚乙烯、聚丙烯,乙烯-丙烯互聚物、超低密度聚乙烯(ULDPE)、加上一些涉及无水物和/或二烯或那些混合物所举为例的移植修饰聚合物的乙烯/α-聚烯烃聚合物。
再有其它适用以修饰聚合物的聚合物包括一些已知可展现不同弹性度的合成和天然弹性体和橡胶。AB和ABA区块或移植聚合体(其中,A系一类似举例而言一苏合香烯半体的热塑性塑料端块,以及B系一衍生自举例而言共轭二烯或低烯烃的弹性中间块)、氯化弹性体和橡胶、乙烯丙烯二烯单体(EDPM)橡胶、乙烯丙烯橡胶等等及其混合物,系一些已知先存技艺式弹性材料预期为适用于修饰本说明书所公开的弹性材料的实施例。
聚丙烯可掺合一类似聚乙烯等低熔融聚合物,以增加其结合区域的强度。在相同的方式中,LLDPE可掺合一低熔融/低密度聚乙烯,以产生相同的结果。
其用以产生无纺布的聚合物的初始化学结构,对织物性质具有影响。一聚合物的化学结构,将会冲击到该聚合物的密度/晶性、速度、和分子量分布。而且,填加两个或以上聚合物以制成一混合物,将会显著冲击到该无纺的性质。织物强度可随着分子量分布的增加而增加。MWD中的增加,将会降低其纺纱过程中纤维的定向性,而在压延期间造成较大的熔融。
该依据本发明的实施例的无纺织物,在多种应用中具有其效用。那些适当的应用包括但不限于,一次性个人卫生用品(举例而言,幼儿用短裤、尿布、吸水性内衣裤、失禁产品、妇女卫生产品、等等),一次性外衣(举例而言,工业服装、工作服、头罩、内衣裤、裤子、衬衫、手套、短袜、等等)、和传染病控制/室内清洁产品(举例而言、外科长袍和窗幔、面罩、头、外科帽子和头巾、鞋、长靴拖鞋、创伤敷里、绷带、消毒包裹、雨刷、实验室用外套、工作服、裤子、围裙、夹克、被褥产品、和床单)。该无纺织物,亦可在下列诸美国专利中所揭示说明的方式中被使用6,316,687;6,314,959;6,309,736;6,286,145;6,281,289;6,280,573;6,248,851;6,238,767;6,197,322;6,194,532;6,194,517;6,176,952;6,146,568;6,140,442;6,093,665;6,028,016;5,919,177;5,912,194;5,900,306;5,830,810;和5,798,167,那些全部内容通过参照而合并进本说明书内。实施例下列实施例是为了说明本发明的某些实施例。其并非限制本发明,除另有说明和本说明书的申请专利范围外。诸实施例中的所有数字系大约的值。在下列诸实施例中,各种的无纺织物是以许多方法为其定性。这些织物的性能资料亦可被取得。大部份的方法或测试,在执行上依据一若适用的ASTM标准,或已知的程序。聚合物混合物的制备一HAAKE双螺丝挤压机被用来产生聚合物混合物。此挤压机具有下列诸特性● 6个分别具有温度为110℃、120℃、130℃、135℃、135℃、135℃的加热区。
● 两个19mm直径的螺钉。
● L/D=30● 熔融温度=146℃● 板牙压力=2.64×106Pa(383psi)● 扭矩=3.44×107Pa(5000psi)● 速度=200rpm聚合物纤维的制备纤维系使用一1寸直径而喂料给一齿轮泵的挤压机,通过挤压该聚合物而产生。此齿轮泵可将物料推经一内含一40微米(平均细孔大小)烧结扁平金属过滤器和一108孔纺丝头的纺纱包。这些纺丝头孔,具有一400微米的直径和一4/l的面区(land)长度(亦即,长度/直径或L/D)。该齿轮泵在操作上,使每分钟大约有0.3克的聚合物挤压经过该纺丝头的每一孔。该聚合物的熔融温度,依据正被纺的聚合物的分子量而变化。通常其分子量愈高,其熔融温度便愈高。淬火空气(略高于室温(约24℃)用以帮助熔融纺成的纤维冷却。此淬火空气恰位于其纺丝头的下方,以及可将空气吹过上述被挤压的纤维线。该淬火空气流动速度,低至足以仅仅在纺织机下方的纤维区域中方能被手感触到。该纤维系被收集在那些直径大约为0.152m(6寸)的导丝滚筒上面。该导丝滚筒的速度系可调整,但就本说明书所示范的实验而言,该导丝滚筒的速度系大约1500转/分钟。该导丝滚筒,位于该纺丝头板牙下方大约3米处。紧接该纺织过程后,所有纤维将会被切割成0.0381m(1.5寸)长的纤维。无纺布织物的制备无纺织物样品,系依据本说明书所说明的程序,在一配备有一硬化、铬合金浮雕钢材滚筒的实验室压延机上面产生出。一浮雕样式系包含一20百分比的总结合面积,和每平方米3.44×105个结合点(每平方寸222个结合点)。第3A-3I图系示意显示各种结合样式加上本发明的实施例中所使用的尺度。
就每一样式设计而言,依循下列的程序。所有纤维是3丹尼尔。该纤维接着将会馈送进一梳棉机内。该纤维将会通过真空被拉进RotorRing,以及传递经一系列的横针。该纤维接着会整齐地被排列,以供一高速离心机进一步梳理。此一程序将会就每一样品一再重复。其次,该纤维便会均匀地分布在一尺度为10cm乘40cm的钢盘上面,一纸质喂入卡将会围住该纤维织布的前端。此将可产生一具有基本重量33g/m2或1oz/yd2的织物。该纤维织布系被放置在该移动的热压延滚筒之间,织布在此结合成无纺织物。其起始结合滚筒条件系如下● 顶部(浮雕)滚筒温度-自大约110℃(230°F)至大约121.1℃(250°F)● 底部(光滑)滚动温度-自大约110℃(230°F)至大约121.1℃(250°F)● 水压-自大约4.82×106pa(700psi)至大约1.03×107Pa(1500psi)● 滚筒速度/刻度盘设定=自大约3至大约5m/min。测验方法上述产生的织物,大部份包含机器方向的排列。其中极少有横方向排列的纤维。那些织物和纤维定向的特性是使用下列的技术来进行的1.光学显微相片是从此实验随机选定的织物。该织物的顶部和底部,两者均以40X的放大倍率来照相。那些光学显微相片亦以相同的方式,得自TANDEC制成的商业纺结合PP织物。
2.将该显微相片转换成Scion影像软件,分割成四等分。
3.该显微相片的每一四分等份中纤维的角度,在测量上系以机器方向为垂直(0°),和横截面方向为水平(90°)。
一旦所有的纤维均被测量,下列的方程式将会被用来量化其定向Fp=2*avg(cosθ)2-1θ系纤维的角度,Fp是其定向参数,其中0的值对应于随机定向,以及1的值对应于一个方向上的完美对齐。
每一织物样品的抗张强度,系使用Instron 4501张力测试器来加以检查。线性颚形夹爪被用来使织物固定至该Instron。“织品的断裂力和伸长率有关的标准试验方法”(ASTM D5035-90)系被使用,但有一项例外。该条带并非被切成0152m(6寸)条带;而是被切成0.101m(4寸)条带。
一标准磨损程序被发展出,其包括下列使用具有一个8隔间样品固定支架的Taber Abraser模型503(旋转平台双头方法)的步骤1.织物被切成0.0762×0.0762m(3×3寸)的片段,加以标记。
2.将胶粘衬垫施加至其被磨蚀的表面的端缘,以防止该端缘处的撕裂。
3.样品被个别称重至4位数。
4.样品被放置在样品固定支架内,以确定不致造成任何皱纹或松弛区域。样品被安排至机器方向,而指向该样品固定支架的中心,以及其浮雕样式一侧是面朝上。
5.织物样品是使用CO2橡胶磨擦轮,进行一周期的决定量(100)。将American Tape制的遮蔽胶带,施加至磨蚀表面,接着在一稳定但快速的动作中移除。
6.织物再次被称重并做记录。
任何在磨蚀期间被撕裂或完全降级的样品将被丢弃,并从进一步的测试中删除。
抗弯刚度在测量上,系根据ASTM方法D1388-64的设计规格。在施行测量前,将一水平调整气泡,放置在其水平平台上面,以确保其一致性。织物的突出长度和基本重量,接着被用来计算其抗弯刚度。虽然突出量测试,系一可轻易测量所有织物的硬度的方式,其要能够使其结果与消费者意见相关联是很重要的。一织物在一人手中的触感,可能具有不同于一机械试验中所发现的性质。此外,织物的表面亦应对触碰具有一柔软感。
所有手感触评估是通过一被选定来评估织物的纹理和硬度的12人研究小组来加以进行。所有研究小组成员都遵循下列程序1.每一研究小组成员,给与4个锚样品,以及那些对应数字,系自最小粒状或最小硬度的1,至最大粒状或最大硬度的15。该锚件及其对应数字表明在表10中。
2.研究小组成员将该样品平放在桌上,使该织物的浮雕侧面向上。将手腕放置在桌面上,使那些食指和中指移动过该样品的整个表面。此一程序将在该样品的所有四个方向上被重复。那些纹理鉴定等级将会被记录。
3.研究小组成员将该样品平放在桌上,使那些惯用的手,放置在样品的顶面上。那些手指在位置上,系使手指指向该样品的顶部。此样品系以手指移动向手掌,同时另一手导引该样品进此成杯状的手而被聚集。此样品系重复被挤压及释放。
4.那些鉴定等级将会就其硬度做记录。
所有样品在就各被给定一分级数之前被评估。因研究小组成员的可得性所致,仅有一选定组的样品被测试。实施例1那些聚乙烯(PE)聚合物,系得自美国陶氏化学公司。该聚乙烯聚合物具有变化的密度和熔融指数。一聚丙烯(PP)聚合物,亦系得自美国陶氏化学公司。该聚合物的性质表明在表1中。
表1实验中所用的聚合物

代表PE1的聚乙烯包括密歇根州米德兰市的美国陶氏化学公司所售的ASPUNTM6842A。代表PE2的聚乙烯包括密歇根州米德兰市的美国陶氏化学公司所售的ASPUNTM6811。代表PE3的聚乙烯包括密歇根州米德兰市的美国陶氏化学公司所售的ASPUNTM6835A。代表PE4的聚乙烯包括密歇根州米德兰市的美国陶氏化学公司所售的AFFINITYTMEG8100。代表PP1的聚丙烯包括密歇根州米德兰市的美国陶氏化学公司所售的H500-35。由这些聚乙烯聚合物配制出四个样品。三个均聚物和一95百分比/5百分比PE1和PE4的混合物系受到测试。其混合物的复合系如上文所说明。4.75kg的PE1锭丸与0.25kg的PE4相结合,被放置在上述双螺丝挤压机的漏斗内。在离开此挤压机后,该聚合物会被拉经一维持在5℃下的冷却槽。其固体聚合物接着会被馈送至一Berlyn Clay Group削片机,在此其被切割成锭丸。此聚合物将会被洗涤15分钟,以及那些锭丸将会被收集100分钟。
那些纤维系使用表2中表明的纺织条件和上文所说明的程序来产生。
表2各种纤维有关的纺纱条件

织物是使用表1中所产生的纤维,由上文所说明的程序所产生,用下列方式编码。有一个三数字系列,被指定给每一样品。其第一数字表示所用的聚合物。其第二数字表示其结合样式数目,其第三数字表示其结合温度。根据表2参照聚合物数字,根据3A-3I图参照结合样式数目。为便利计,此标记系统系被用来识别样品。
第3A图是关于结合样式1,其具有46°角度、20百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度7.62×10-4m(0.03寸)。第3B图是关于结合样式2,其具有20°角度、16百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.86×10-4m(0.027寸)。第3C图是关于结合样式3,其具有20°角度、24百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度8.38×10-4m(0.033寸)。第3D图是关于结合样式4,其具有20°角度、20百分比的结合面积、2.31×105pts/m2(149pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度9.30×10-4m(0.0366寸)。第3E图是关于结合样式5,其具有20°角度、20百分比的结合面积、4.60×105pts/m2(297pts/in2)、基本宽度1.7×10.3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.60×10-4m(0.026寸)。第3F图是关于结合样式6,其具有42°角度、16百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.86×10-4m(0.027寸)。第3G图是关于结合样式7,其具有37°角度、24百分比的结合面积、3.44×105pts/m2(222pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度8.38×10-4m(0.033寸)。第3H图是关于结合样式8,其具有46°角度、20百分比的结合面积、2.31×105pts/m2(149pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度9.3×10-4m(0.0366寸)。第3I图是关于结合样式9,其具有35°角度、20百分比的结合面积、4.60×105pts/m2(297pts/in2)、基本宽度1.7×10-3m(0.067寸)、基本高度4.32×10-4m(0.017寸)、和点宽度6.60×10-4m(0.026寸)。
其次,织物片将被切割,以用于张力测试、磨蚀测试和突出量测试。由于所有样品在纤维织布和在边缘的处理温度的不一致性,都从中央切割。
该织物以视觉做评估。温度、压力、和树脂的选择对该织物的视觉外观并无影向。结合滚筒样式对该织物的视觉性质具有显著的效应。第4A-4I图是一些在119.4℃(247°F)下由树脂6824A所产生的无纺织物的20X放大倍率的显微相片,它们显示该织物在视觉上的差别。该暗菱形区域,是该织物的结合区域,而该较淡区域则是那些未结合的纤维。
第4A、4F、4G、4H和4I图与第4B、4C、4D、和4E图的比较显示,20°的侧壁角度将会产生较那些包含较大侧壁角度的样式者为小的结合面积。该织物的结合部位区域表明在表3中。此数据显示一个比起其产生结合样式1、6、7和8的织物的滚筒样式百分比较大的结合区域。此是通过于其短暂结合针点下方的聚合物的熔融流动,以及亦由于因该结合针点间的空区域中的纤维的紧压所致增加的热传递。该纤维包含较少的自由空间,以及其经由传导的热传递系较高。所有包含20°侧壁角度的样式系显示,一织物的百分比结合面积,系小于其滚筒样式者。该聚合物纤维的收缩,系一可能的原因。在该纤维的纺纱处理期间,该纤维系在一定向状态中的张力下被固化。当该纤维在该结合针点下,暴露于较高的温度时,该聚合物分子将会松回或收缩至一较稳定的状态。
表3无纺织物样品测得的结合面积


该20°侧壁角度样式也呈现出具有一些较不紧密或较高多孔性的纤维。结合样式4、5、7和8,具有相同的百分比结合面积,但每平方米有不同的点密度。每一结合点间的距离就该具有较低的每平方米的点密度的样式而言是较大的。
其织物重量的分析显示在表4中。由于该纤维织布的梳理程序和操作的变化,该织物中呈现有薄点。其厚度中的变异性,对机械性质具有强的冲击。在织物内的一平方寸的样品的重量具有极低的变异性。
表4样品内和间的织物重量的分析

第4A-4I图是PE1树脂在也被用以评估纤维定向的119.4℃(247°F)下的变化结合样式的显微相片。该图片的研究显示,大部份的纤维被安排成一个方向(向上及向下)。这就是该纤维的机器方向(MD)。大部份纺结合和熔化的织物包含较多随机排列的纤维,使该织物包含横方向的强度(CD)及机器方向的强度。那些随机选定的织物的评估显示,商业纺结合织物有关的织物定向(fp)值低于这些实施例中所产生及测试的样品。该商业纺结合织物,在TANDEC下制自聚丙烯。该结果表明在表5中。该织物的底部的fp值高于其顶部,此意谓该纤维在底部上面,是较对齐于机器方向。其顶部上面的结合针点可将纤维推进一较为随机的状态,而该结合至一平坦滚筒的底部纤维可保持该织布的对齐。
表5从纤维定向测量收集的资料

表6至9系显示在各种温度下使用各种结合样式所测试的对每一聚合物纤维的无纺织物的各种性质。每一样品中指定三数字系列。其第一数字指示所用的聚合物。第二数字指示其结合样式数目,其第三数字指示其°F中的结合温度。参照表2关于聚合物数字,以及参照第3A-3I图关于结合样式数目。为便利计,此标记系统系被用来识别样品。举例而言,1-1-116.1代表在116.1℃(241°F)的结合温度下使用结合样式1(第3A图)以PE1树脂制成的织物。所有样品的张力性质使用一Instron4501和如前文所说明的程序ASTM D5035-90就峰值负载和断裂下的伸长率来加以测量。由于在相同的条件下产生的织物间的变异性,所以测试6个张力样品。每一处理条件下所观察的平均磨蚀(ABR)见列表。就抗弯刚度(FR)而言,每一织物的突出垂长度和基本重量将会被测量,以便根据上文所说明的ASTM D 1388-64来决定FR。每一树脂以各处理条件测量的平均FR见列表。
表6树脂PE1的资料

表7树脂PE2的资料


表8树脂PE3有关的资料

表9包含95百分比PE1和5百分比PE4的树脂的资料

那些峰值负载值范围从800g至高达2400g。这些值典型的PP样品小的多。使用136.6℃(278°F)下的样式2,PP1将会产生4875g的峰值负载。通常,其规一化峰值负载会随着温度、结合区域、和结合角度的增加而增加。就树脂PE2和95百分比PE1与5百分比PE4的混合物而言,当就PE2而言温度自114.4℃(238°F)至116.1℃(241°F)时和当就该混合物而言温度自117.7℃(244°F)至119.4℃(247°F)时,其峰值负载将会降低。此可能是促成其破裂机制的变化的一项因素。那些样品的成对比较显示,24百分比的结合面积较16百分比的结合面积的峰值负载高。诚如前文所示,其结合角度对样品上面的实际结合面积具有显著的效应。第5图是PE2树脂在不同的温度下以及使用各种结合样式的正规化峰值负载对温度的曲线图。其峰值负载是线性地规一化至33g/m2(1oz/yd2)的基本重量,因为峰值负载系基本重量的有力函数。
第6图是PE1树脂在不同的温度下以及使用各种结合样式的百分比伸长率对温度的曲线图。那些PE无纺布的伸长率,范围从10百分比至高达95百分比。在136.6℃(278°F)下,使用样式2,PP的伸长率仅仅能达至31百分比,以及37百分比是任一处理条件下所能达至的最高值。那些结合点浓度的降低,将会显著地增加其伸长率。事实上,树脂PE2在114.4℃(238°F)下,在那些结合点浓度自4.60×105pts/m2降低至2.31×105pts/m2(自297pts/in2至149pts/in2)时,其伸长率几乎会加倍。其中一个例外为95百分比PE1和5百分比PE4的树脂,其伸长率显示并未因那些结合点浓度的降低而有不同。此可通过PE4较结合样式的效应更为显著的高弹性的性质来加以解释。温度控制很重要。1.6℃(3°F)的温差可具有高至伸长率100百分比的降低。
第7图系表明树脂PE1有关典型的应力-应变的曲线的三个实施例。该样品系使用PE1树脂在116.1℃(241°F)、117.7℃(244°F)、和119.4℃(247°F)的温度下,使用结合样式3而制成。当温度增加时,该峰值负载将会增加。在119.4℃(247°F)的最高温度下,该织物的伸长率将会降低。而且,在119.4℃(247°F)下所产生的织物的初始模数高于在较低温度下所产生的初始模数。这是所有织物样品的典型情形。
第8图是PE1树脂有关磨蚀对温度的典型曲线图。通常,其数据显示,其伸长率是所有处理变量的函数。其相互关联的结合面积与结合角度的增加,将会使该织物的伸长率增加。通常,其耐磨强度大体上是温度的函数,虽然那些结合样式间,可见到显著的差别。此可通过其破裂机制来加以解释。当其表面被磨擦时,该纤维将会自该结合点被拉出。由于其磨蚀有关的破裂机制所致,其表面上面的细毛量,将会依赖结合强度更甚于其结合的尺度。其磨蚀有关的值,范围自0.48mg/cm2至大于1mg/cm2。在136.6℃(278°F)下使用结合样式2的PP样品,具有0.15mg/cm2的磨蚀值,而小于PE者的3倍以上。
第9图显示PE2有关抗弯刚度(“FR”)对温度的曲线图。这是一个典型的曲线图,并表示其它树脂中所发现的趋势。一高长度的突出量表示一硬织物。而且,一高的基本重量是促成硬度增加的一项因素,因为该织物在端缘处悬挂时,可支撑较大的重量。该织物在其雕花滚筒侧向上及向下时的突出量的平均值,被视为个别片段织物有关的总突出量。每一个的平均值会被得到。可以认为这可更好地表示该织物的总硬度,因为该织物在穿戴期间会在两个方向上弯曲。每一样品系以这种方式测量四次。
其可观察到那些具有较大结合角度的结合样式6-9是比具有较那些具有20°结合角度的样式2-5更高的值。所有PE样品的抗弯刚度,就样品3-7-119.4而言,其范围系自其低的20至一高的125mg*cm。这些值以一典型的PP织物具有一200mg*cm以上的fr值来说系相当低。树脂PE2在与相同处理条件下的其它树脂相比较显示最小的硬度。这可能是由于该聚合物的低密度所致。其最高FR值是通过PE3而得到,以及可归因于一较高的聚合物密度。填加PE4至FE1将产生一较高的FR值。其可能是通过在其结合区域中熔融的增加和/或该纤维和织物的收缩所致。关于其结合样式,低结合面积、低侧壁角度和低结合点密度显示将产生最低的FR值。理应注意的是,低结合面积、侧壁角度和结合点密度可影响到其它性质,亦即,磨蚀。所以,由于PE的低模数所致,其FR值可能不如其它性质来得重要。
那些结合滚筒样式对织物的硬度(ST)和其表面的纹理(GR)的效应,是通过手触感测试来加以评估的。12人研究小组成员以1至15的定标来标定该两性质。锚样品(用做一基线)在提供上如表10中所列。在119.4℃(247°F)下对每一结合样式做处理的树脂PE1被用做样品。表11摘录出每一结合样式有关两手标定的平均值。
表10锚材料及其对应值

表11手感调查所收集的数据

扫描电子显微镜(SEM)被用来分析处理条件对无纺表面、结合周缘、横截面、和破裂机制的效应。那些处理条件显示可达成该织物的触感和强度。此节讨论织物表面与其性质间的关系,以及亦可确定该破裂机制为处理条件的函数。
Arial视图和剖面图系使用以下方法得到1.该织物的剖面在切割上,是通过将其置于两片纸间,以及将此样品置于液态氮中大约1分钟,接着是以剃刀片垂直于该机器方向来做切割。
2.将该样品放置在具有传导带的平台上面,其边缘衬有传导性石墨涂料。
3.Denton真空Hi-Res 100高分辨率镉喷镀系统被用来涂敷该织物,使其成一100-120?厚的薄膜。
4.该样品系置于其样品隔间内,此隔间被抽真空至1.3×105Pa(107torr)。
5.可用的20Kev被使用到5Kev,因为有该织物表面上面电荷堆积的问题。
6.在各种放大倍率下得到显微相片。
7.Scion成像软件,被使来观察及测量该显微相片。
所有被测试的样品是以一60X与100X间的低放大倍率,聚焦在该结合点上面而做显微照相。由于温度间并无显著的表面差异,所有相片取自低于那些粘着点1.6℃(3°F)的样品。该温度就所有样品而言是119.4℃(247°F),树脂PE2除外,其在119.4℃(247°F)。所有九个制自树脂PE1的结合样式,系显示在第10A-IOI图中。所有结合点包含在中央的一个大平坦表面,其系朝边缘升高。样式1、6、7和8,全包含一大的侧壁角度。该效应以PE1树脂几乎不如以其它树脂时显著,此或许是由于其高的熔融指数。该具有小侧壁角度的样式,将会产生一包含一较小平坦区域的结合,和几何上更呈圆形的结合点。由于其以20°侧壁角度所产生的结合点的外形系呈圆形,以及将会覆盖较前文所述为小的表面区域,每一结合点间的空间则会较大。此较大空间可因该纤维的曝露区域的增加,而给与该织物较柔软的触感。此系与其手感评估资料相互关联。相反地,较小结合点表面覆盖面,将会产生较小的缠绕纤维,以及将会降低织物的强度。此已见于先前的张力资料中。
处理条件对无纺织物的效应是在类似张力和磨蚀测试等破坏性测试期间的断裂机构。有三种类型的断裂会发生。该纤维会在结合景象外被拉动,而在其结合周边处断裂,或在结合点外断裂。SEM显微相片亦被用来确定所选定无纺样品的断裂机构。第11A-C图系显示张力破裂测试期间的断裂机构的一个实施例。显而易见,大部份的处理条件,将会使得聚乙烯织物因纤维拉离一微弱结合点而断裂。在某些较高温度的情况中,很显然该结合系强至足以使纤维在其结合周边处断裂。将5百分比的PE4树脂加至PE1树脂,将会使其结合强度,在119.4℃(247°F)下,增加至足以使某些纤维在其结合周边处断裂。就此点而论,有两个破裂机制的证据,那些包括在纤维拉离结合点和纤维在其结合周边处的断裂。
磨蚀所造成的断裂机构的分析,并未显示其在结合周边处断裂的迹象。第12A-B图显示磨蚀所造成断裂结合点的两个实施例。其薄丝带状条带是其先前热结合点的遗迹。甚至那些在张力测试中因脆弱纤维在其结合周边处断裂而断裂的样品,并未显示相同的破裂机制。该织物在磨蚀后,会因其结合点的破坏而断裂。此一现象可以解释为何耐磨强度未能达至一峰值,以及接着如同其韧性和伸长率,随着其处理温度的增加而降低。其耐磨强度仅依赖其结合力。
诚如上文所展示,本发明的实施例,可提供一种具有相对增加的抗张强度、伸长率、磨蚀强度、抗弯刚度、和/或柔软度的无纺织物。本发明的实施例所提供的额外特性和优点,可为本技艺的专业人员轻易理解。
虽然本发明业已参照有限数目的实施例做了说明,其存在有一些变更形式和修饰体。举例而言,该织物组合物并不需要为一在上文给定的组合物内的混合物。其可包含那些组合物的任一量,只要该织物组合物所希望的性质能符合。理应注意是,该织物组合物的应用例,并不限于卫生物品,其可使用在任何需要一热结合无纺织物的环境中。其所附的权利要求,意在涵盖所有在本发明的界定范围内的变更形式和修饰体。

1.一种制造无纺布织物的方法,其包括使一纤维织布通过一对滚筒,以得到具有高百分比结合面积的热结合织物,其中所述的高百分比结合面积是通过在其中一个滚筒上面的浮雕样式形成的,此浮雕样式具有高百分比的结合点面积。
2.根据权利要求1所述的方法,其中所述的浮雕样式具有高百分比的结合点区域和宽的结合点角度。
3.根据权利要求1所述的方法,其中所述的结合面积的百分比为至少大约16百分比。
4.根据权利要求1所述的方法,其中所述的结合面积的百分比为至少大约20百分比。
5.根据权利要求1
查看更多专利详情