早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

具有陶瓷桁架芯的陶瓷复合结构及其制造方法

  • 专利名称
    具有陶瓷桁架芯的陶瓷复合结构及其制造方法
  • 发明者
    利安娜·L·莱曼, 威廉·P·基思, 巴德哈德夫·查克拉巴蒂
  • 公开日
    2014年5月28日
  • 申请日期
    2008年7月18日
  • 优先权日
    2007年7月18日
  • 申请人
    波音公司
  • 文档编号
    C04B35/622GK103819198SQ201410057542
  • 关键字
  • 权利要求
    1.一种制造陶瓷复合结构的方法,包括步骤 (A)形成包括陶瓷桁架的芯,陶瓷桁架具有多个由固定于刚性陶瓷接合剂中的陶瓷纤维形成的针; (B)通过蚀刻、粉碎所述针的端部将所述接合剂从所述针的端部去除,以暴露柔性的所述陶瓷纤维; (C)弯曲所述针的端部以使所述针的端部平行于面板展平,其中所述面板中至少一个包括多个片,并且所述针的末梢部分夹于所述片之间;以及 (D)将面板接合到所述针的端部2.如权利要求1所述的方法,其中步骤(A)包括 将一段长度的针原料插入载体中,以及 将所述针原料切割为使得所述针的端部暴露的长度3.如权利要求2所述的方法,其中所述针原料插入到泡沫层中4.如权利要求1所述的方法,还包括步骤 (E)在步骤(B)中的所述去除所述接合剂的过程中通过对所述芯部分施加保护涂层来保护部分的所述芯5.如权利要求1所述的方法,其中步骤(C)的执行是通过 使所述面板与所述暴露的陶·瓷纤维接触,以及 用所述面板来弯曲所述暴露的陶瓷纤维6.如权利要求1所述的方法,其中步骤(C)包括将所述暴露的陶瓷纤维接合到陶瓷预浸料的片之间7.如权利要求1所述的方法,还包括步骤 (F)说明并设计包括所述复合结构的飞行器子组件8.如权利要求1所述的方法,还包括步骤 (G)获得用于制造所述复合结构的材料9.一种复合陶瓷结构,包括 一对总体平行的复合陶瓷面板;和, 配置在所述面板之间并接合到所述面板的芯,所述芯包括陶瓷桁架, 所述桁架包括由固定于刚性陶瓷接合剂中的陶瓷纤维形成的多个复合陶瓷针,所述针的每一个都包括大体横过所述面板而延伸的中间部分,以及大体平行于所述面板展平延伸并接合到所述面板的末梢部分,其中所述面板中至少一个包括多个片,并且所述针的末梢部分夹于所述片之间10.如权利要求9所述的复合陶瓷结构,其中至少一定的所述针形成相对于所述面板的平面的大约30度的角11.如权利要求9所述的复合陶瓷结构,其中所述针的末梢部分接合到所述面板内部的相对的表面12.如权利要求9所述的复合陶瓷结构,其中所述芯还包括围绕所述陶瓷桁架的结构泡沫
  • 技术领域
    [0002]本公开总体涉及一种陶瓷复合结构,更特别涉及一种具有陶瓷桁架(truss)芯的复合夹层结构,以及其制造方法
  • 背景技术
    [0003]陶瓷基复合(CMC)结构由于其耐受相对高的操作温度的能力而可以用于航天及其他应用中例如,CMC结构可以用于制造飞行器应用中承受高温排气的部件CMC结构的一种类型使用夹层结构,其中两个CMC面板接合到芯上在一种夹层结构中,芯可以由延伸贯穿芯的厚度并穿入面板的类似桁架的CMC针的阵列来增强这些针提供了载荷通道,沿这些载荷通道在面板之间传递压缩、拉伸和/或剪切载荷然而,由于针的端部和面板的片(Ply)之间的有限的接合强度,特别是在面板相对薄的地方,这种现有的针桁架结构的承载能力是有限的
  • 专利摘要
    本发明公开了一种具有陶瓷桁架芯的陶瓷复合结构及其制造方法。用于制造CMC结构的CMC夹层包括接合到芯的面板,该芯用包括CMC针的阵列的陶瓷桁架增强。针的端部中的接合剂基体被去除,留下暴露的、柔性的陶瓷纤维。暴露的陶瓷纤维被弯曲以平行于面板延伸,并接合到面板的片中的一个或多个。陶瓷针的端部中的接合剂基体可以通过机械或者化学工艺去除。
  • 发明内容
  • 专利说明
    具有陶瓷桁架芯的陶瓷复合结构及其制造方法
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
具有陶瓷桁架芯的陶瓷复合结构及其制造方法[0001]本申请是申请日为2008年7月18日的名称为:“具有陶瓷桁架芯的陶瓷复合结构及其制造方法”的中国专利申请200810137725.X的分案申请。[0004]如果针的端部可以弯曲以平行于面板延伸从而提供较大的接合区域,则可以增大CMC针和面板之间的接合强度。然而,因为CMC针相对较脆而如果尝试弯曲CMC针的端部则可能断裂,所以该方案不可行。[0005]因此需要一种具有陶瓷桁架芯并表现出改善的芯和面板之间的接合性能的CMC结构。本公开的实施例旨在满足该需求。
[0006]CMC结构包括具有陶瓷桁架增强芯的夹层结构。通过将形成桁架的CMC针的外端弯曲来实现芯和面板之间的优良的接合。通过弯曲CMC针的端部,在针和面板之间提供了较大的接合区域,从而提高了芯的传递载荷的能力。CMC针的端部可以通过从接合陶瓷纤维的针端部去除基体材料来弯曲。去掉基体材料后,剩下的陶瓷纤维较为柔性,使得它们可以被弯曲从而它们平行于面板的平坦表面延伸并可以接合到面板的平坦表面。[0007]根据一个公开的方法实施例,陶瓷复合结构可以通过多个步骤制造,所述步骤包括:形成包括陶瓷桁架的芯,陶瓷桁架具有由固定于刚性接合剂中的陶瓷纤维形成的多个针;将接合剂从针的端部去除,以暴露陶瓷纤维;弯曲针的端部;以及将面板接合到针的端部。陶瓷桁架可以通过将针插入载体,使得针的端部从载体突起而形成。针的端部中的接合剂随后通过蚀刻、粉碎工艺去除。在从针的端部去除接合剂材料之前,可以将面板的片施加到芯上并穿入针的端部。在去除接合剂材料之后,针的端部中的暴露的陶瓷纤维可以接合到面板的片或接合到面板的片之间。[0008]根据另一个方法实施例,用于陶瓷复合结构中的陶瓷桁架芯可以通过一种工艺制造,所述工艺包括多个步骤:用多个复合陶瓷针形成陶瓷桁架,其中复合陶瓷针包括固定于基体中的陶瓷纤维;以及,从针的端部去除基体以暴露陶瓷纤维。桁架可以由将针部分插入载体泡沫中使得陶瓷针的端部保持被暴露来形成。从针的端部去除基体以仅保留柔性陶瓷纤维。柔性陶瓷纤维可以弯曲以顺应可以接合芯的面板的表面。可以通过任意几种工艺,从CMC针的端部去除基体接合剂,该工艺包括蚀刻或粉碎。可以将一层保护材料施加在载体上以在去除基体接合剂的过程中保护载体。
[0009]根据另一方法实施例,陶瓷复合结构可以通过多个步骤制造,所述步骤包括:制造芯,并通过将面板接合到形成部分芯的陶瓷纤维的暴露的弯曲端部,而将面板接合到芯。芯的制造可以通过:在载体内形成复合陶瓷针的阵列,每一个针包括固定于基体中的陶瓷纤维并从载体突起;将基体从针的突起端去除以暴露部分的陶瓷纤维;以及,弯曲陶瓷纤维的暴露部分以使其接合到面板。
[0010]根据另一个实施例,复合陶瓷结构包括:一对总体平行的复合陶瓷面板;和,配置在面板之间并接合到面板的包括祐1架的芯,祐1架包括多个复合陶瓷针,针的每一个都包括大体横过面板而延伸的中间部分,以及大体平行于面板延伸并接合到面板的末梢部分。面板中至少一个可以包括多个片,针的末梢部分可以夹在这些片之间。可选地,针的末梢部分可以接合到面板的内部面上。
[0011]1、制造陶瓷复合结构的方法,包括步骤:
[0012](A)形成包括陶瓷桁架的芯,陶瓷桁架具有多个由固定于刚性接合剂中的陶瓷纤维形成的针;
[0013](B)将接合剂从针的端部去除,以暴露陶瓷纤维;
[0014](C)弯曲针的端部;以及
[0015](D)将面板接合到针的端部。
[0016]通过制造陶瓷复合结构的方法制造的陶瓷复合结构。
[0017]用制造陶瓷复合结构的方法制造飞行器的子组件。
[0018]一种制造用于陶瓷复合结构中的陶瓷桁架芯的方法,包括步骤:
[0019](A)用多个复合陶瓷针来形成陶瓷桁架,其中复合陶瓷针包括固定于基体中的陶瓷纤维;以及,
[0020](B)从针的端部去除基体以暴露陶瓷纤维。
[0021]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,其中步骤(A)包括在载体材料中固定陶瓷针。
[0022]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,其中步骤(A)包括:
[0023]将针原料插入载体材料中,以及
[0024]将针原料切割为使针的端部暴露在载体外的长度。
[0025]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,还包括步骤:
[0026](C)在载体上施加涂层以在执行步骤(B)的过程中保护载体。
[0027]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,其中步骤(B)通过蚀刻基体来执行。
[0028]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,其中步骤(B)通过粉碎基体来执行。
[0029]通过制造用于陶瓷复合结构中的陶瓷桁架芯的方法制造的陶瓷桁架芯。[0030]用制造用于陶瓷复合结构中的陶瓷桁架芯的方法来制造具有陶瓷桁架芯的飞行器的子组件。
[0031]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,还包括步骤:
[0032](C)说明并设计使用具有陶瓷桁架芯的复合结构的飞行器子组件。
[0033]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,还包括步骤:
[0034](C)获得(procuring)用于制造陶瓷祐1架芯的材料。
[0035]制造用于陶瓷复合结构中的陶瓷桁架芯的方法,其中陶瓷桁架芯的制造形成用于制造飞行器子组件的部分操作。
[0036]制造陶瓷复合结构的方法,包括步骤:
[0037](A)制造芯,通过一
[0038](i)形成复合陶瓷针的阵列,每个复合陶瓷针包括固定于刚性基体中的陶瓷纤维,
[0039](ii)在载体中围绕部分的阵列,以使陶瓷复合针的端部从载体突起,
[0040](iii)从针的突起端去除基体以暴露部分的陶瓷纤维,
[0041](iv)弯曲陶瓷纤维的暴露部分;以及
[0042](B)通过将面板接合到陶瓷纤维的暴露的弯曲的端部来将面板接合到芯。
[0043]制造陶瓷复合结构的方法,其中子步骤(A) (ii)通过将针原料部分插入载体中来执行。
[0044]制造陶瓷复合结构的方法,其中步骤(A)还包括一
[0045](V)在去除基体的过程中通过对载体施加保护涂层来保护载体材料。
[0046]制造陶瓷复合结构的方法,其中子步骤(A) (iii)通过蚀刻针的突起端中的基体来执行。
[0047]制造陶瓷复合结构的方法,其中子步骤(A) (iii)通过粉碎针的突起端中的基体来执行。
[0048]制造陶瓷复合结构的方法,其中步骤(C)包括将所述暴露的陶瓷纤维的两端接合到陶瓷预浸料的片之间。
[0049]通过制造陶瓷复合结构的方法来制造的复合陶瓷结构。
[0050]用制造陶瓷复合结构的方法来制造飞行器子组件。
[0051]制造陶瓷复合结构的方法,还包括步骤:
[0052](C)说明并设计包括该陶瓷复合结构的飞行器子组件。
[0053]制造陶瓷复合结构的方法,还包括步骤:
[0054](F)获得用于制造陶瓷复合结构的材料。
[0055]本公开实施例的其他特征、益处和优势会由于参考附图和所附权利要求的实施例的以下描述而变得显而易见。



[0056]图1是使用陶瓷桁架芯的现有技术的CMC夹层结构的等轴图示,图中未示出载体,而部分的面板被去掉以更好地示出CMC针的直的端部。
[0057]图2是根据本公开实施例的具有陶瓷桁架芯的部分的CMC夹层结构的横截面图示。[0058]图3是示出制造CMC夹层结构的方法的一个步骤的横截面视图。
[0059]图4是示出该方法另一个步骤的横截面视图。
[0060]图5是类似图4的视图,但示出了已经接合到面板的片之间的CMC针的弯曲的端部。
[0061]图6是示出CMC夹层结构的替代实施例的横截面视图。
[0062]图7是示出用于制造具有陶瓷桁架芯的CMC夹层的工艺的基本步骤的简化的流程图。
[0063]图8是示出用于制造陶瓷针原料的替代步骤的简化的流程图。
[0064]图9是飞行器生产和服务方法的简化的流程图。
[0065]图10是飞行器的方块图。

[0066]首先参看图1,一种典型的现有技术的CMC夹层结构包括:接合到芯的一对平行的CMC面板14、16,该芯包括陶瓷针18的阵列。针18排列成“X”图形且用于增强可以包括结构泡沫材料(未示出)的芯。每一个针18都是直的,并具有延伸贯穿面板14、16并接合到面板14、16的外端。针18和面板14、16之间的接合区域限于针18的端部穿透到面板14、16中的深度。
[0067]现在参看图2和6,CMC夹层结构20广泛地包括接合到芯22的一对总体平行的CMC面板24、26。芯22可能包括固定于结构或半结构泡沫的层30中的CMC桁架25。桁架25增强芯22并用于在面板24、26之间传递压缩、拉伸和/或剪切载荷。在图示实例中,面板24、26是平坦的并基本相互平行延伸;然而也可能是其他几何结构,包括但无限制,非平行曲线形以及曲线形和直线形的组合。
[0068]面板24、26的每一个都可能包括浸在陶瓷浆中的陶瓷织物纤维的多层(layer)或片(ply)。如这里所使用的,术语“陶瓷纤维”指传统已知的及商业可获得的制成纤维形态的陶瓷材料。陶瓷纤维可以包括但不限于碳化娃、娃石、TYRAMNO(K;、氧化招、娃酸招、硼硅酸铝、氮化硅、硼化硅、硼氮化硅及类似材料。桁架结构25确定增强夹层结构20的载荷通道,从而在需要时允许制造自支撑和承载的CMC结构。由于夹层20中使用的所有组分都是陶瓷基的,因此CMC夹层20特别适合高温应用。
[0069]层30在制造中形成将桁架25固定在位的载体,并可根据所用材料增大夹层20的结构刚度。载体层30可以包括多种材料中的任何材料,这些材料包括例如但不限于,有机消失性泡沫、轻质闭孔的聚甲基丙烯酰亚胺(PMI)泡沫、瓦片、刚化棉絮或其他陶瓷材料。可以用作载体层30的陶瓷材料的进一步实例包括但不限于,陶瓷毡、其他纤维状陶瓷绝缘材料(软或硬)、单片陶瓷等。一种特别的适合用作载体层30的刚性泡沫在2002年4月6日授权并转让给波音公司(Boeing Company)的美国专利N0.6716782中公开。该在先专利中描述的刚性泡沫绝缘材料是陶瓷纤维的组合,该陶瓷纤维被烧结在一起以形成低密度、高度多孔的具有低热导率的材料。该泡沫表现出高拉伸强度和良好的尺寸稳定性。如这里所使用的,“高温”材料通常旨在指在其以上则聚合物材料表现出减小的热容率的温度。
[0070]桁架结构25包括CMC针28的阵列,CMC针28延伸贯穿载体层30的厚度,通常横过面板24、26。针28由包括固定 于刚性陶瓷接合剂或基体中的陶瓷纤维的针原料形成。由于以下描述的目的,针28可以由允许基体材料蚀刻掉的材料制造。针28中单个纤维的直径与整个针28相比是小的;例如,在一个令人满意的实施例中,每个纤维具有大约11微米的直径,而其中针具有大约700微米的整体直径。
[0071]针28可以排列成形成几何桁架网络的组,例如四边形的几何形。每个针28都包括直的中间部分28a,以及相对的末梢部分28b,末梢部分被夹在各面板24、26的片24a、24b和26a、26b之间并接合到相邻的各面板24、26的片24a、24b和26a、26b。在一个实施例中,如最好在图2中看到的,针28可以形成相对于垂直于面板24、26而延伸的轴大约30度的角。每个针28的末梢部分28b被弯曲,以大体平行于面板24、26的平面延伸。末梢部分28b的长度会依赖于具体的应用;在一个实施例中,大约等于针28直径4到5倍的长度提供了令人满意的结果。
[0072]正如前面注意到的,在图2和5所示的实施例中,末梢部分28b夹在相应的面板24,26的相邻的片24a、24b和26a、26b之间并接合到这些片上。每个针28与面板24、26之间的接合的强度可以部分由末梢部分28b接合于面板24、26上的长度来确定。最后,固化夹层结构20,施加的粘接剂与来自片24a、24b、26a、26b的陶瓷基材料一起的使用用于将针28的末梢部分28b接合到面板24、26。
[0073]夹层结构的可替换的实施例20a示于图6中。在本实施例中,针28的末梢部分28b通过粘接剂层40直接接合到面板24、26的内相对的面上,粘接剂可以包括在制造过程中和/或来自面板24、26的基体材料中施加的膜粘接剂。
[0074]现在注意图3、4、5、7和8,这些图公开了一种制造上述CMC夹层结构20的方法。从步骤42 (图7)开始,使用例如,但不限于,现有技术中已知的拉挤(poltrusion)工艺来制造形成针28的材料。可以设计针28的制造以便于后续使用来将基体材料从针的端部去除以暴露陶瓷纤维的工艺。
[0075]具体参看图8,连续长度的针原料可以由拉挤(poltrusion)制造,其中陶瓷纤维被拉挤(poltruded)成型,如步 骤60所示。接着,可以使用标明为和“C”的三种工艺中的任何来形成针结构,使用的材料和工艺使得针更易于后续的将基体从针的端部去除的工艺。这样,使用工艺“A”来将突起的陶瓷纤维在步骤62用低温涂覆比如环氧树脂在设定的间隔进行底涂。接着,在步骤64,底涂过的纤维用陶瓷浆外涂,并随后在步骤66烘焙。替换工艺“B”由步骤68开始,步骤68中陶瓷纤维用材料涂覆从而调节针的强度和脆度。类似的,可以在步骤70使用温度变化烘焙方案来更好地用机械或者化学方法使基体被去除。替换工艺“C”由在步骤72将纤维用环氧树脂或类似涂层来底涂开始,随后在步骤74,底涂过的纤维被陶瓷浆外涂。接着,在步骤76,涂覆过的纤维在中间温度烘焙。
[0076]现在回到图7,在步骤42制造针原料,在步骤44制造适合的载体30,载体如上所述可以包括形成轻质的、低密度泡沫或陶瓷材料的层。依照后续步骤中用来从针28上去除基体接合剂的工艺,可以在步骤46选择在载体30上施加保护涂层32,从而保护载体30不受基体去除过程中的腐蚀或其他损伤的影响。
[0077]在步骤48,单个的针28被插入载体30。针插入工艺可以用已知设备设计来进行,其中将针原料以预定的角度插入载体30随后将针原料切割成针28需要的最终长度。针插入工艺进行以使得针的外端保持暴露并从载体30突起。
[0078]接着,在步骤50,一或两片预浸料可选地施于桁架芯的表面,而针28的端部穿过预浸料层以更好地将针28接合及锁定在面板24、26中。在步骤52,针28的端部通过用几种工艺的任何来去除末梢部分28b中的基体接合剂而被剥皮。刚性基体接合剂的去除使得末梢部分28b中的陶瓷纤维34被暴露,如图4和5所示。针28端部的暴露的单个陶瓷纤维由于其相对小的直径而为相对柔性的,这就使得末梢部分28b被弯曲或剥皮以平行于面板24、26展开。
[0079]基体接合剂可以通过化学腐蚀、粉碎或其他形式的机械工艺来从针28的末梢部分28b去除,这些工艺可以包括,但不限于,侵蚀。例如,桁架芯的端部可以浸入化学蚀刻剂以将末梢部分28b化学蚀刻从而去除基体接合剂。在该工艺过程中,涂层32保护桁架芯的中间部分28a不受损伤。一种用于从针的端部去除基体接合剂的机械工艺可以包括在两个压盘或类似的机械装置之间将针的端部压碎。可以使用其他化学工艺将基体接合剂从针的端部去除,该工艺是特别设计的以去除如前面参考图8所描述的施加在陶瓷纤维上的底涂层和/或外涂层。
[0080]在这些保护涂层32被施加在载体30上的应用中,可以选择地执行步骤54,其包括通过任何几种适宜的工艺来去除保护层32,其包括焚化(燃烧)。
[0081]在步骤56,该叠层的夹层放置于工具上,在随后的步骤58中,该叠层被固化并烧结以将预浸料接合到芯上并产生完全固化的夹层结构。可以在箭头36 (图4)的方向施加机械压力以将片压紧并迫使暴露的纤维34平行于片24a、24b展平。
[0082]现在参看图9和10,本公开的实施例可以用于如图9所示的飞行器制造和服务方法78以及如图10所示的飞行器94的环境中。在试生产中,示范方法78可以包括飞行器94以及材料获得82的说明和设计80。在生产中,进行飞行器94的构件和子组件的制造84以及系统集成86。其后,飞行器94可能经过鉴定和交付88以投入使用90。在用户的使用中,飞行器94按计划进行日常维护和服务90 (其还可能包括修正、重构、整修等)。
[0083]方法78的每一个过程都可以由系统集成者、第三方和/或操作者(例如用户)来执行或进行。为了该说明书的目的,系统集成者可以包括但不限于任何数量的飞行器制造商和主系统转包人;第三方可以包括但不限于任何数量的销售商、转包人和供应商;以及操作者可以是航空公司、租赁公司、军事实体、服务组织等。
[0084]如图10所示,由示范方法78生产的飞行器94可以包括具有多个系统96的机身98和内部100。高级系统96的实例包括推进系统102、电子系统104、水力系统106和环境系统108中的一个或多个。可以包括任何数量的其他系统。虽然示出了航天的实例,本发明的原理可以应用于其他工业,比如汽车工业。
[0085]这里实施的装置可以在生产和使用方法78的任何一个或多个阶段中使用。例如,相应于生产工艺84的构件或子组件可以以类似于当飞行器94使用时生产的构件或子组件的方式来制造或生产。同样,一个或多个装置实施例可以被用于生产阶段84和86,例如,通过显著加快飞行器94的组装或减小飞行器94的成本。类似的,一个或多个装置实施例可以当飞行器94使用时被使用,例如但不限于维护和服务92。
[0086]尽管本公开的实施例已经关于特定的示范性实施例来加以描述,应该理解的是具体的实施例是为了说明目的但并不限于此,对于本领域技术人员来说也可以进行其他修改。

查看更多专利详情