早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和系统制作方法

  • 专利名称
    在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和系统制作方法
  • 发明者
    C·Q·登霍欧, G·M·普里斯科
  • 公开日
    2012年10月3日
  • 申请日期
    2011年1月26日
  • 优先权日
    2010年2月11日
  • 申请人
    直观外科手术操作公司
  • 文档编号
    A61M25/01GK102711586SQ201180006939
  • 关键字
  • 权利要求
    1.一种用于控制机器人内窥镜远侧尖端的操作者命令的移动同时维持该尖端处的滚动取向的方法,该方法包括 从操作者可操纵的输入控制设备接收控制输入; 确定来自所述控制输入的所述机器人内窥镜的尖端的当前命令的状态,其中所述命令的状态包括当前命令的滚动位置和速度; 通过根据所述尖端的之前处理周期命令的状态指示的滚动角度调节以及指示将在所述尖端处维持的滚动取向的设置点将所述当前命令的滚动位置和速度约束为修改的当前命令的滚动位置和速度,从而修改所述当前命令的状态;并且 命令所述机器人内窥镜的尖端被驱动到所述修改的当前命令的状态2.根据权利要求I所述的方法,其中尖端参考系在所述内窥镜的尖端处定义,使得具有指示在所述尖端处捕获的视图的深度方向的Ztip轴,指示所述视图的水平方向的Xtip轴,以及指示所述视图的垂直方向的Ytip轴,该方法进一步包括 接收指示所述设置点的参考向量; 将所述参考向量投影到包含所述Ytip轴和Ztip轴的平面上;以及 将所述滚动角度调节确定为所述参考向量和被投影的参考向量之间的角度3.根据权利要求I所述的方法,其中只要所述滚动角度调节小于阈值,则通过将所述当前命令的滚动速度设置为零而对其进行修改,并且通过将所述命令的滚动位置设置为之前处理周期命令的滚动位置而对其进行修改4.根据权利要求I所述的方法,其中每当所述滚动角度调节大于阈值时,通过将所述当前命令的滚动速度设定为固定值而对其进行修改,并且将所述命令的滚动位置调节到与所述修改的当前命令的滚动速度一致的值5.根据权利要求I所述的方法,其中每当所述滚动角度调节大于阈值时,就将所述当前命令的滚动速度修改为所述滚动角度调节的函数,并且将所述当前命令的滚动位置调节到与所述修改的当前命令的滚动速度一致的值6.根据权利要求I所述的方法,其中建立所述设置点使得其与重力正交7.根据权利要求I所述的方法,进一步包括 接收来自操作者操纵的输入设备的所述设置点的指示8.根据权利要求7所述的方法,其中当从操作者接收到所述设置点的指示时,通过所述尖端处的滚动取向来建立所述设置点9.根据权利要求7所述的方法,进一步包括 将所述设置点的图形表示显示在操作者可见的显示屏上; 从操作者操纵的输入设备接收输入; 根据接收到的输入对所述显示屏上的设置点的图形表示的取向进行调节;以及 从所述设置点的所述图形表示的调节的取向来确定所述设置点10.根据权利要求I所述的方法,其中命令所述机器人内窥镜的尖端被驱动到所述修改的当前命令的状态包括 确定操纵器的一个或更多个关节的状态和所述机器人内窥镜的一个或更多个弯曲区段的弯曲角度的组合,从而实现该机器人内窥镜的尖端的修改的当前命令的状态,所述操纵器以相应的自由度移动来操纵所述机器人内窥镜,所述机器人内窥镜的一个或更多个弯曲区段弯曲所述机器人内窥镜的主体;以及 命令所述操纵器的一个或更多个关节被驱动到确定的关节状态,并且所述机器人内窥镜的所述一个或更多个弯曲区段被驱动到确定的弯曲角度11.根据权利要求10所述的方法,其中所述操纵器的一个或更多个关节包括用于沿着线性路径前后移动所述机器人内窥镜的近端的柱状关节,以及用于围绕所述线性路径旋转所述机器人内窥镜的近端的旋转关节12.根据权利要求10所述的方法,其中从控制输入确定所述机器人内窥镜的尖端的当前命令的状态包括 从所述控制输入和针对一个或更多个之前的处理周期存储的控制输入的信息来确定平移和角度尖端状态13.根据权利要求10所述的方法,其中从所述控制输入确定所述机器人内窥镜的尖端的当前命令的状态包括 相对于固定的笛卡尔参考系,将所述控制输入变换成所述机器人内窥镜的尖端的期望状态14.根据权利要求13所述的方法,其中确定所述操纵器一个或更多个关节的状态以及该机器人内窥镜的一个或更多个弯曲区段的弯曲角度包括 将修改的当前命令的状态应用到包括所述操纵器和所述机器人内窥镜的组合的串行运动链的逆向运动上15.—种医疗机器人系统,包括 机器人内窥镜,该机器人内窥镜具有细长主体,该细长主体包括一个或更多个可弯曲区段和远侧尖端; 操纵器,该操纵器具有一个或更多个可驱动的关节,从而以相应的自由度移动来操纵所述机器人内窥镜; 操作者可操纵的输入控制设备;以及 处理器,该处理器被配置为从所述操作者可操纵的输入控制设备接收控制输入;从所述控制输入确定机器人内窥镜的尖端的当前命令的状态,其中所述当前命令的状态包括命令的滚动位置和速度;根据由该尖端的之前处理周期命令的状态指示的滚动角度调节以及指示将被维持在所述尖端处的滚动取向的设置点通过将所述当前命令的滚动位置和速度约束为修改的当前命令的滚动位置和速度而修改所述当前命令的状态;并且命令所述机器人内窥镜的尖端被驱动到修改的当前命令的状态16.根据权利要求15所述的医疗机器人系统,其中尖端参考系被定义在所述内窥镜的尖端,从而具有指示在所述尖端捕获的视图的深度方向的Ztip轴,指示该视图的水平方向的Xtip轴,以及指示该视图的垂直方向的Ytip轴;并且其中所述处理器进一步配置为接收指示所述设置点的参考向量,将该参考向量投影到包含所述Ytip轴和Ztip轴的平面上,并且确定所述滚动角度调节为所述参考向量和被投影的参考向量之间的角度17.根据权利要求15所述的医疗机器人系统,其中所述处理器被配置为只要所述滚动角度调节小于阈值,则通过将所述当前命令的滚动速度设置为零而对其进行修改,并且通过将所述当前命令的滚动位置设置为之前处理周期命令的滚动位置而对其进行修改18.根据权利要求15所述的医疗机器人系统,其中所述处理器被配置为每当所述滚动角度调节大于阈值时,就通过将所述当前命令的滚动速度设置为固定值而对其进行修改,并且将所述当前命令的滚动位置调节到与所述修改的当前命令的滚动速度一致的值19.根据权利要求15所述的医疗机器人系统,其中所述处理器被配置为每当所述滚动角度调节大于阈值时,就将所述当前命令的滚动速度修改为所述滚动角度调节的函数,并且将所述命令的滚动位置调节到与所述修改的当前命令的滚动速度一致的值20.根据权利要求15所述的医疗机器人系统,其中建立所述设置点从而与重力正交21.根据权利要求15所述的医疗机器人系统,其中所述处理器被配置为从操作者操纵的输入设备接收所述设置点的指示22.根据权利要求21所述的医疗机器人系统,其中所述处理器被配置为在从操作者接收到所述设置点的指示时,通过所述尖端处的滚动取向来建立所述设置点23.根据权利要求21所述的医疗机器人系统,进一步包括 显示屏;以及 操作者可操纵的输入设备; 其中所述处理器被配置为将该滚动设置点的图形表示显示在所述显示屏上,从所述操作者可操纵的输入设备接收输入,根据接收到的输入在所述显示屏上调节所述滚动设置点的图形表示的取向,并且从所述滚动设置点的图形表示的被调节的取向来确定所述滚动设置点24.根据权利要求15所述的医疗机器人系统,其中所述处理器被配置为通过确定操纵器的一个或更多个关节的状态和所述细长主体的一个或更多个可弯曲区段的弯曲角度的组合来命令所述机器人内窥镜的尖端被驱动到所述修改的当前命令的状态,从而实现该机器人内窥镜的尖端的所述修改的当前命令的状态;并且命令所述操纵器的一个或更多个关节被驱动到确定的关节状态,并且命令所述机器人内窥镜的一个或更多个可弯曲区段被驱动到确定的弯曲角度25.根据权利要求24所述的医疗机器人系统,其中所述操纵器的一个或更多个关节包括用于沿着线性路径前后移动所述机器人内窥镜的近端的柱状关节,以及用于围绕该线性路径旋转所述机器人内窥镜的所述近端的旋转关节26.根据权利要求20所述的医疗机器人系统,其中所述处理器被配置为通过从所述控制输入和针对一个或更多个之前处理周期的控制输入的存储信息来确定平移和角度尖端状态,从而从所述控制输入确定该机器人内窥镜的尖端的当前命令的状态27.根据权利要求24所述的医疗机器人系统,其中所述处理器被配置为通过相对于固定的笛卡尔参考系将所述控制输入变换为所述机器人内窥镜的尖端的期望状态,从而从所述控制输入确定所述机器人内窥镜的尖端的命令的状态28.根据权利要求27所述的医疗机器人系统,其中所述处理器被配置为通过将所述修改的当前命令的状态应用到包括所述操纵器和所述机器人内窥镜的组合的串行运动链的逆向运动上来确定所述操纵器的一个或更多个关节的状态以及所述机器人内窥镜的所述一个或更多个可弯曲区段的弯曲角度
  • 技术领域
    本发明总体上涉及机器人内窥镜,并且特别地涉及在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向同时控制该机器人内窥镜尖端的操作者命令移动的方法和系统
  • 背景技术
  • 具体实施例方式
    图I作为一个示例说明了一种医疗机器人系统100,该系统包括机器人内窥镜110、插入该内窥镜110中的多个光纤电缆120、具有存储器135的控制处理器130、致动系统140、图像处理器150、显示屏160以及输入控制设备171、172控制处理器130和图像处理器150 (以及在此所述的任何其他处理器或控制器)各自可以实现为硬件、固件、软件或其组合,它们与一个或更多个计算机相互作用或实现在一个或更多个计算机中优选地,显示屏160包括结合在计算机显示器中的左眼屏和右眼屏,从而能够向系统100的操作者显示三维图像然而,出于成本考虑,显示屏可以是仅能够显示二维图像的标准计算机显示器虽然仅显示出一个显示屏,但可以提供额外的显示屏,使得例如当外科医生观看显示屏160时,辅助人员可以观看定位在该辅助人员附近的显示屏输入控制设备171优选地是能够命令至少6个自由度(DOF)移动(例如,三个平移自由度和三个定向自由度)的六维(6-D)控制杆(速率或位置型)另一方面,输入控制设备172可以是常规计算机输入设备,例如计算机鼠标或键盘机器人内窥镜110具有柔性的细长主体114,该主体优选地具有至少两个可控制可弯曲的区段该主体具有在其远端111处产生可操控尖端112的至少一个可控制可弯曲的区段该主体还具有耦接到其近端115的用于致动内窥镜110的移动及其可控制可弯曲的区段的致动系统140控制电缆或其他常规控制装置(未显示)从致动系统140延伸到该可操控尖端112的至少一个可控制可弯曲的区段,使得该尖端112可以可控制地弯曲或转动,如例如通过弯曲尖端112的虚线形式所示的在这个示例中,其他电缆或其他常规控制装置(未显示)也可以延伸到其他可控制可弯曲的区段,使得它们可以被可控制地弯曲被动可弯曲的区段也可以包括在机器人内窥镜以及可弯曲的区段中,所述可弯曲的区段以某种方式被限制为与其他可弯曲的区段一起移动参考图2,该致动系统140包括内窥镜操纵器231以及一个或更多个弯曲致动器232该内窥镜操纵器231用来以两个自由度致动机器人内窥镜110用将机器人内窥镜110的近端115前后移动的柱状关节(prismatic joint)执行的一个自由度是插入/抽出移动(如通过虚线的双头箭头标记的“I/O”说明的)另一个自由度是用围绕其插入/抽出方向旋转机器人内窥镜110的旋转关节执行的近侧滚动旋转(如通过虚线的双头箭头标记“小”说明的)弯曲致动器232致动机器人内窥镜110的弯曲区段201-203,因此所述区段在各自的螺距(pitch)旋转(如通过虚线的双头弧线a 1-a 3说明的)和俯仰(yaw)旋转(如 通过虚线的双头弧线¢1-0 3说明的)中均是可弯曲的除了这些可弯曲的区段,机器人内窥镜110的第一连杆211以其近端耦接到内窥镜操纵器231,并且以其远端耦接到主体114的剩余部分,使得该内窥镜操纵器231使得连杆211在I/O方向或滚动方向(0 )上移动,然后主体114的剩余部分(并且具体地是,所有可弯曲的区段201-203和与这些可弯曲的区段201-203耦接的耦接连杆212-215)与第一连杆211 —致地移动一个或更多个光纤电缆120 (图I中所示)优选地配置有弯曲或形状传感器,例如Fiber Bragg Grating (光纤布拉格光栅)(或其他应力传感器,例如使用瑞利(Rayleigh)散射的那些应力传感器),使得通过光纤电缆的光被控制处理器130 (或分离的位置处理器)处理,从而确定内窥镜110的当前位置和形状,包括其远侧尖端112的取向除了延伸经过内窥镜110的光纤电缆120,配置有应力传感器的一个或更多个额外的光纤电缆(未显示)可以附连到该内窥镜110,从而提供附连点处的内窥镜110的位置信息使用Fiber Bragg Grating确定内窥镜的位置和弯曲的额外细节可以例如在名称为“RoboticSurgery System Including Position Sensors Using Fiber Bragg Gratings,,的美国专利申请 2007/0156019 Al;名称为“Fiber Optic Position and/or Shape Sensing Basedon Rayleigh Scatter” 的美国专利申请 2008/0212082A1 ;名称为 “Robotic SurgicalInstrument and Methods using Bragg Fiber Sensors,,的美国专利申请 2008/0218770Al ;以及名称为“Fiber Optic Shape Sensor”的美国申请序列号为12/164,829的专利申请中找到;它们中的每一个通过引用结合在此常规可操控的内窥镜的额外细节可以例如在名称为 “Steerable Endoscope and Improved Method of Insertion” 的美国专利6, 869, 396 B2中找到,通过引用将其结合在此虽然光纤传感器是用于弯曲或形状感测的优选装置,但还可以将其他传感器用于实践本发明,例如电磁传感器、电位计等在内窥镜110的远侧尖端112处提供了立体或单视场照相机以用于捕获图像,这些图像被传送到图像处理器150并且由该图像处理器150进行处理,并且以用于内窥镜的常规形式显示在显示屏160上光纤电缆120之一能够以其近端耦接到光源(未显示)以用于在远侧尖端112处的照明目的当照相机远离远侧尖端112观察时,通过照相机视野的深度轴ZTIP、水平轴Xtip以及垂直轴Ytip在远侧尖端112处定义远侧尖端参考系200如图3中简单显示的,当远侧尖端112在一个方向301或另一个方向302上弯曲时,它的水平取向300 (如由Xtip-Ztip平面定义的)可以相对于其环境而改变如前面说明的,当操作者从由远侧尖端照相机捕获并且显示在显示屏160上的图像观察区域时,相对于环境在水平取向上的这种改变可能使操作者迷失方向为了防止这种方向感的缺失,理想的是,如图4中所示,当远侧尖端112在任何方向上弯曲时,它的水平取向300保持与其环境相同例如,可以期望 的是水平取向300总是垂直于重力作为一个示例,图5说明了控制处理器130的部件的框图,该控制处理器130允许操作者选择或改变设置点,该设置点指示在机器人内窥镜110远侧尖端112处捕获的照相机视图的期望的滚动取向,并且允许操作者命令该远侧尖端112的移动,同时该系统自动地维持远侧尖端112处的期望的滚动取向操作者使用适当的输入设备,例如输入控制设备172,来选择或改变该设置点而与设置点处理器132相互作用,并且使用输入控制设备171命令机器人内规镜110远侧尖纟而112的移动在操作者干预或不干预下使用重力来产生参考可以建立初始或缺省的设置点在这种情况下,可以定义指示该设置点的参考向量Ysp,使得它指向与重力向量相反的方向随后可以通过操作者与设置点处理器132相互作用来改变该设置点(或如果缺省的设置点未被定义,则建立初始的设置点)例如,通过按下输入控制设备171、172之一上的选择按钮,或使用通过声音识别系统(未显示)识别用于这种目的的声音命令,或使用任何其他公知的交互装置,操作者可以选择设置点,使得其相应于尖端112的当前滚动取向在这种情况下,设置点处理器132定义了指示设置点的参考向量YSP,使得在这种操作者选择输入时,该参考向量Ysp指向与尖端的照相机视图的Ytip轴线相同的方向以常规方式从当前尖端位置和取向确定尖端参考系(XTIP、YTIP、ZTIP),所述当前尖端位置和取向通过前向运动处理器136从致动单元140的感测的关节位置138产生作为另一个示例,操作者可以通过与图形用户界面(⑶I)相互作用来建立设置点如图6中说明的,设置点处理器132可以实现为包括该⑶I,该Gn包括显示屏160,在该显示屏160上与由远侧尖端照相机捕获的图像350相邻地显示图形图像600图形图像600包括当前滚动角度指示器601以及图形可旋转的滚动设置点指示器602⑶I允许例如输入控制设备172等输入控制设备与该图形图像600的可旋转滚动设置点指示器602相互作用例如,响应于输入控制设备172通过其操作者的移动,滚动设置点指示器602可以从当前滚动角度指示器601旋转到不同角度,如图6中所示同时,当操作者使滚动设置点指示器602旋转时,输入管理器131使远侧尖端滚动角度(C^tip)和当前滚动角度指示器601跟踪该移动,使得当远侧尖端滚动角度匹配该可旋转的滚动设置点指示器602指示的角度时,可选择的滚动设置点指示器602在显示屏160上消失,并且保留当前滚动角度指示器601再次参考图5,通过移动输入控制设备171,操作者命令机器人内窥镜110的远侧尖端112的移动如果输入控制设备171是位置类型设备,则它的移动定义了平移和定向位置的6个自由度(D0F)在这种情况下,通过用连续处理周期之间位置中相应改变除以处理周期的持续时间能够以常规方式来计算平移和定向速度的6个D0F另一方面,如果该输入控制设备171是速率类型设备,则它的移动定义了平移和定向速度的6个D0F在后一种情况下,能够以常规方式通过将相应速度和处理周期的持续时间的乘积添加到针对紧邻的之前的处理循环计算的(或初始设置的)位置值,计算平移和定向位置的6个DOF中的每一个在任何一种情况下,通过输入处理器来执行额外的速度或位置计算,为了简化说明的目的,该输入处理器被认为是输入控制设备171的一部分输入管理器处理器131处理输入控制设备171的输出,用来产生相对于固定笛卡尔X、Y、Z参考系(例如,图8的固定系800)的远侧尖端112的当前命令的状态,并且使用由设置点处理器132提供的设置点信息来修改当前命令的状态,从而产生远侧尖端112的修改的当前命令的状态在此参考图7-10说明通过输入管理器处理器131执行的处理的详细说明修改的当前命令的状态考虑了操作者命令的远侧尖端112的移动和在远侧尖端112处维持滚动取向的要求(即维持由相对于与设置点相关联的参考向量Ysp由远侧尖端照相机视图的Xtip-Ztip平面定义的水平角度)逆向运动处理器134从输入管理器处理器131接收远侧尖端112的命令的状态并 且将它变换成相应的关节命令,以便驱动内窥镜操纵器231和弯曲致动器232通过以常规方式将命令的状态应用到包括内窥镜操纵器231和机器人内窥镜110的组合的串行运动链的逆向运动而实现该变换关节控制处理器135包括用于通过内窥镜操纵器231和弯曲致动器232来致动和控制每个关节的关节控制系统将逆向运动处理器134的输出提供到关节控制处理器135,该处理器135通过致动命令137来控制致动单元140的操作,使得内窥镜操纵器231的可控关节和机器人内窥镜110的可控可弯曲的区段被驱动到适当位置,从而实现机器人内窥镜110远侧尖端112的命令的状态作为一个示例,图7说明了在输入管理器处理器131中实现的方法的流程图,所述方法用来控制机器人内窥镜110远侧尖端112的操作者命令的移动,同时维持相应于设置点的尖端112处的滚动取向在步骤701中,该方法从输入控制设备171接收操作者输入在步骤702中,该方法以常规方式通过将例如从输入控制设备171接收的平移和取向位置的6个DOF和速度应用到已知变换从而以相应的尖端112的平移和定向位置的6个DOF和速度产生当前命令的状态,将操作者输入变换成内窥镜110远侧尖端112的当前命令的状态如在此使用的术语“当前命令”是指针对当前处理循环或周期(例如,时间“t”)提出的命令,并且如在此使用的术语“之前的处理命令”是指在前面的处理循环或周期中已经提出的命令(例如,时间“t-1”)在步骤703中,该方法使用尖端112和设置点紧邻的之前的处理命令的状态的信息而确定滚动角度调节(A (tTIPA)滚动角度调节表示滚动角度围绕Ztip轴的改变,该Ztip轴需要用来维持在远侧尖端112处照相机捕获的视图的水平Xtip轴具有由设置点来指示的滚动取向如前面参考图5说明的,设置点可以是操作者选择的,或设置点可以是使用例如重力感测机构而自动建立的,所述重力感测机构例如前面结合参考美国专利7,134,992所述,在这种情况下,滚动取向优选地是垂直于向下指向的重力向量的水平线用于执行步骤703的方法的一个示例示于图9中,其中在步骤901中,从设置点处理器132接收参考向量Ysp,该参考向量指示设置点并且该参考向量的生成在前面参考图5进行了说明当远侧尖端112在不同方向上移动并且取向时,它的远侧尖端参考系200由此(具有如参考图2定义的正交轴XTIP、Ytip和Ztip)移动例如,如图8中所示,当尖端112之前处于在固定参考系800中指示为200’的尖端参考系位置和取向时,参考向量Ysp显示为被t呆作者建立尖端112随后的移动导致尖端参考系位直和取向如在固定参考系800中通过尖端参考系200指示的移动在步骤902中,将参考向量Ysp投影到包括尖端参考系的Ytip轴和Ztip轴的平面上,如图10中所示在这种情况下,可以从尖端112的前面的处理循环命令的状态(例如图5中所示的紧邻的之前的处理周期)来提供尖端参考系200,或可以从由指示尖端112感测的状态的前向运动处理器136接收的信息来提供所述尖端参考系200在步骤903中,将滚动角度调节(A (^tipa)确定为参考向量Ysp与其在Ytip-Ztip平面上的投影Y’ SP之间的角度,同样如图10中所示在步骤704中,判断在步骤703中确定的滚动角度调节是否小于阈值如果所述滚动角度调节小于阈值(即滚动角度调节相对小),则该方法前进到步骤705,否则,该方法前进到步骤707该阈值可以设置为一些固定值,例如5度或当在显示屏160上观察捕获的图像350时导致远侧照相机视图的滚动取向中的改变的其他一些角度,所述改变使操作者难以发现或至少不使操作者迷失方向为了满足操作者偏好,还可以通过添加允许操作者指定和/或调节阈值的一些装置来修改参考图6中说明的GUI 在步骤705中,由于滚动角度调节已经被确定为小于阈值,所以该方法将当前命令的滚动速度C ^ipc )修改为零,并且在步骤706中,如果必要,该方法将当前命令的滚动位置,即0Tirc(t)修改为其紧邻的之前的处理周期命令的滚动位置,即0Tirc(t-l),使得远侧尖端112处的当前滚动取向可以维持另一方面,在步骤707中,当滚动角度调节已经被确定为等于或大于阈值时,该方法将当前命令的滚动角度速度()修改为某个值,该值是滚动角度调节的函数或是恒定值,这取决于本发明选择的实施例,并且在步骤708中,使用例如下面的等式,所述方法修改了当前命令的滚动位置,即0 HPC (t),从而与修改的当前命令的滚动速度(4fc )一致^TIPC W —本TlPC (0 AT + ^TIPC (1—1)( I )其中“i>TIPC{tY’是修改的当前命令的滚动速度,“AT”是处理循环或周期的持续时间,而“ ^tipc(t-1) ”是紧邻的之前的处理周期命令的滚动位置(之前存储在图5中的存储元件或存储器133中并且当前从中读取)步骤707中使用的函数和常数中的任一者或两者可能与总命令的尖端速度的幅值按比例缩放,从而避免可能使操作者惊讶的较大和/或突然的改变在该函数的一个示例中,可以构造该函数,使得当前命令的滚动速度(4 PC )随着滚动角度调节的增大(具有某一最大值)而增大当将当前命令的滚动速度(^tipc )设置为常数时,对当前命令的滚动速度的幅值的这种限制可以延长到达当前命令的滚动位置所需要的时间量,但是将防止较大的潜在危险的尖端速度命令的发生在步骤709中,该方法以如在步骤702中的常规方式将操作者输入变换成内窥镜尖端112的修改的当前命令的状态,除了此时该修改的当前命令的滚动速度被认为是等于步骤705或步骤707中确定的数值并且该修改的当前命令的滚动位置被约束为等于步骤706或步骤708中确定的数值以外,这取决于步骤704的结果可替换地,可以仅通过用修改的当前滚动位置替换当前命令的状态中的当前命令的滚动位置并且用修改的当前命令的滚动位置替换当前命令的状态中的当前命令的滚动速度,来简单地形成内窥镜尖端112的修改的当前命令状态在步骤710中,将远侧尖端112的修改的命令的状态提供给逆向运动处理器134,如前面参考图5说明的虽然已经参考一个或多个优选实施例对本发明的不同方面进行了说明,但应当理解的是本发明被完全保护在所附权利要求的全部范围内
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:在机器人内窥镜的远侧尖端自动维持操作者选择的滚动取向的方法和系统的制作方法内窥镜是允许医生通过将设备插入通过自然腔道亦或外科医生创建的开口并且将该设备引导到病人体内的靶部位来捕获内部身体器官的图像并且对其问题进行诊断的一种医疗设备。在一些情况下,还可以使用所述设备在内部身体器官上执行多种医疗程序。所述设备可以是可操控的,使得其远侧尖端出于导航目的被可控地取向和定位。可以将图像捕获设备(例如立体或单视场照相机)提供在其远侧尖端以使得来自该视角的由照相机捕获的图像可以在显示屏上被外科医生看到。为了在靶部位执行各种医疗程序,手术工具(例如用于切割、抓握、烧灼等的那些手术工具)可以延伸出内窥镜的远侧尖端。内窥镜可以是刚性的(例如用于腹腔镜检查的那些内窥镜),或者其可以是柔性的,使得其能够遵循体腔的曲率。内窥镜还可以是可刚化的和/或机器人化的。可刚化的内窥镜是这样一种内窥镜,其柔性主体的至少一部分可以通过机械锁定机构而基本刚性地制造。机器人内窥镜是一种柔性内窥镜,该内窥镜具有在计算机控制的伺服机构下弯曲的至少一部分。经自然腔道内窥镜手术(“NOTES”)可以使用一种可操控的内窥镜而在病人身上执行手术程序。作为一个示例,可以引导柔性内窥镜通过身体腔道中的一个,并且从病人内部而不是从外部通过微创切口进入腹部。例如,在“经胃的”手术中,仪器经过嘴部并且进入胃中。然后执行胃切开术,使得所述仪器可以进入腹部并且被外科医生用来在腹腔内执行医疗程序。一旦该程序完成,将所述仪器连同程序期间去除的任何组织一起取出,并且将进入点有支撑地闭合。因为在病人体内未产生用来容纳内窥镜的进入的外部切口,所以NOTES可能甚至比使用微创切口的手术的痛苦更少。而且,因为它使用自然身体腔道替代外部切口来进入身体,所以这可以引起全身麻醉的需要减少以及更快的恢复时间。在操作内窥镜过程中,当朝向靶部位移动时,或当在靶部位执行医疗程序时,可以将内窥镜尖端多次和在不同方向上转动。结果,在内窥镜的远侧尖端捕获的图像的取向可能改变,并且当观察这些捕获的图像时,其操作者可能变得失去方向感。如果由于这种方向感缺失而使操作者意外地在错误方向上移动了内窥镜尖端,该尖端可能无意中刺穿或损害组织,造成对病人的伤害。即使通过小心地移动内窥镜尖端避免这类伤害,仍需要额外的时间来重复地确定内窥镜尖端相对于病人体内靶部位的正确取向。因此,执行该程序所需要的时间延长了,这增加了手术成本并且增加了健康安全顾虑。授权给Schara等人(2006)的美国专利No. 7,134,992 (通过引用将其结合在此)公开了用于通过感测内窥镜的旋转并且在视频显示设备上显示该旋转图像之前相应地旋转内窥镜图像以补偿所感测的旋转而在参考重力的垂直取向上提供内窥镜图像的方法。这类图像旋转技术的一个问题是当工具延伸出内窥镜的远端时,所述工具不能从为即将到来的任务捕获的图像的操作者的观点被正确地取向。而且,虽然使用重力作为定向该图像的参考可能是方便的,但消除专用于感测重力方向的额外硬件的成本和复杂度是期望的。另外,有时为操作者提供选择不同取向参考的装置可能是有用的
因此,本发明的一个或多个方面的一个目的是用于在机器人内窥镜的远侧尖端自动地维持期望的滚动取向同时将机器人内窥镜尖端朝向病人体内靶部位移动或在病人体内靶部位处移动的方法、以及用于实施该方法的系统。本发明的一个或多个方面的另一个目的是用于在机器人内窥镜的远侧尖端自动地维持期望的滚动取向而不需要该远侧尖端处滚动角度传感器的一种方法、以及用于实施该方法的系统。本发明的一个或多个方面中的又一个目的是为操作者提供选择期望的滚动取向的装置的方法,以及用于实施该方法的系统,所述滚动取向将被自动地维持在机器人内窥镜的远侧尖立而。这些和额外的目的是通过本发明不同方面来实现的,其中简短地说,一个方面是一种计算机执行的方法用于控制机器人内窥镜远侧尖端的操作者命令的移动,同时维持该尖端处的滚动取向,该方法包括从操作者可操纵的输入控制设备接收控制输入;从所述控制输入确定机器人内窥镜尖端的当前命令的状态,其中该当前命令的状态包括当前命令的滚动位置和速度;根据由尖端的在前处理期间命令的状态指示的滚动角度调节以及指示尖端处维持的滚动取向的设置点而通过将当前命令的滚动位置和速度限制为修改的当前命令的滚动位置和速度来修改当前命令的状态;以及命令机器人内窥镜的尖端被驱动到所述修改的当前命令的状态。 另一方面是一种医疗机器人系统,包括机器人内窥镜,其具有包括一个或更多个可弯曲区段和远侧尖端的细长主体;操纵器,该操纵器具有一个或更多个可驱动的关节以用于在相应的自由度移动中操纵所述机器人内窥镜;操作者可操纵的输入控制设备;以及处理器,该处理器配置为从操作者可操纵的输入控制设备接收控制输入,从控制输入确定该机器人内窥镜的尖端的当前命令的状态,其中所述当前命令的状态包括当前命令的滚动位置和速度,根据由所述尖端的在前处理期间命令的状态指示的滚动角度调节和指示该尖端处维持的滚动取向的设置点而通过将当前命令的滚动位置和速度限制为修改的当前命令的滚动位置和速度来修改该当前命令的状态,并且命令该机器人内窥镜的尖端被驱动到修改的当前命令的状态。从本发明优选实施例的以下说明,本发明的不同方面的额外的目的、特征和优点将变得显然,这些说明应当与附图相结合采用。图I说明了利用本发明多个方面的医疗机器人系统。 图2说明了利用本发明多个方面的医疗机器人系统的机器人内窥镜的示意图。图3说明了在不同方向上定向而没有滚动取向补偿的机器人内窥镜的尖端。图4说明了根据本发明多个方面在不同方向上定向且具有滚动取向补偿的机器人内规镜的尖。图5说明了如利用本发明多个方面的医疗机器人系统中包括的用于操作者选择设置点以及控制机器人内窥镜的尖端的控制处理器的部件的框图。图6说明了一种显示屏,该显示屏显示由照相机在机器人内窥镜的远侧尖端处捕获的图像,以及当前滚动角度和滚动设置点指示器的图形表示(如利用本发明多个方面的医疗机器人系统的显示器上所示)。图7说明了利用本发明多个方面的计算机执行的方法的流程图,该方法用于控制机器人内窥镜的远侧尖端的操作者命令的移动,同时维持尖端处的滚动取向。图8说明了固定参考系以及与机器人内窥镜的远侧尖端相关联的参考系,当用于利用本发明多个方面的医疗机器人系统中时,所述机器人内窥镜的远侧尖端在固定参考系中移动。图9说明了计算机执行的方法的流程图,该方法用于在利用本发明多个方面的医疗机器人系统中确定滚动角度调节。图10说明了当在利用本发明多个方面的医疗机器人系统中使用时确定滚动角度调节的图形描述。


在机器人内窥镜系统中,在机器人内窥镜远侧尖端捕获并且显示在可被内窥镜的操作者看到的屏幕上的照相机视图的取向被自动维持在与设置点相关联的滚动取向,从而当内窥镜移动、弯曲并且其尖端在不同取向上转动时,不使操作者迷失方向。处理器从操作者输入产生尖端的当前命令的状态,并且对其进行修改以维持该设置点滚动取向。为了产生修改的当前命令的状态,该当前命令的滚动位置和速度被约束为修改的当前命令的滚动位置和速度,其已根据由所述尖端和设置点的之前处理周期命令的状态指示的滚动角度调节进行了修改。所述处理器之后命令机器人内窥镜被驱动到修改的命令的状态。



查看更多专利详情