早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

含全氟聚醚的微乳状液制作方法

  • 专利名称
    含全氟聚醚的微乳状液制作方法
  • 发明者
    马里奥·维斯卡, 阿尔巴·基托弗拉蒂
  • 公开日
    1988年4月20日
  • 申请日期
  • 优先权日
  • 申请人
    奥西蒙特公司导出引文BiBTeX, EndNote, RefMan
  • 文档编号
  • 关键字
  • 权利要求
    1.“油在水中”型或“水在油中”型的微乳状液由一种单一均相的透明或半透明的液体宏观地构成,在一定的温度范围内无限期稳定,由下列基本组份组成-一种含水溶液,-一种具有全氟烷基端基的全氟聚醚,-一种氟化的表面活性剂2.按照权利要求1的微乳状液,其另外的特征是它含有一种表面活性剂,其疏水部分由一个全氟聚醚链构成3.按照权利要求1的微乳状液,还含有一种可溶于水的无机盐和/或一种氟化醇或具有1至6个碳原子的烷醇4.按照权利要求1的微乳状液,其中的全氟聚醚由平均分子量范围为400至10000的全氟聚醚混合物组成5.按照权利要求4的全氟聚醚含水微乳状液,其中全氟聚醚由下列类别中的一个或多个中选择a)它有任意分布的全氟氧化烯个体,其中彼此相同或不同的Rf和R′f是-CF3,-CF2F5,-C3F7,并且m.n.p值满足上述的平均分子量的条件;b)RfO(CF2CF2O)n(CF2O)mR′f它有任意分布的全氟氧化烯个体,其中彼此相同或不同的Rf和R′f是-CF3或-C2F5,并且m.n值满足上述的条件;它有任意分布的全氟氧化烯个体,其中彼此相同或不同的Rf和R′f是-CF3,-C2F5或-C3F7,并且m.n.p.q值满足上述条件;其中相互相同或不同的Rf和R′f是-C2F5或-C3F7,并且n值满足上述条件;e)RfO(CF2CF2O)nR′f其中彼此相同或不同的Rf和R′f是-CF3,-C2F5,并且n值满足上述条件;f)RfO(CF2CF2CF2O)nR′f其中彼此相同或不同的Rf和R′f是-CF3或-C2F5,或-C3F7n值满足上述条件;g)其中Rf,R′f是全氟烷基,R″f是F或全氟烷基,n值满足上述的平均分子量的条件
  • 技术领域
    中有经验的人们提供了一些与制备含PFPE的O/W和W/O型的微乳状液的信息,而不应将之视为限制性的规定本发明的微乳状液特别可用于制造含可溶于水的添加物的润滑剂,以便使油中的添加物的分散体有高稳定性和在USP 3778381中所述的,已知的有4个以上的碳原子的有机氟化化合物的微乳状液一样,本发明的微乳状液有高的吸氧能力,这使之在保护动物器官方面,作为纯血的代用品是经济而有效的下面的实例仅用于说明本发明是可以实施的的实施例例1用11ml氨溶液〔含NH310%(重量)〕中和18克具有上面所定义具有类别1)全氟聚醚结构的酸,然后用双蒸馏水中和至50ml,该酸具有仅含少量二元羧酸(R′f=Rf=CF2COOH)的一元羧酸的官能度,并由具有不同分子量而平均化合当量为466的组分的混合物构成将25ml所得的溶液在水浴中加热直到排除过量的NH3;将残留物用双蒸馏水稀释至20ml在缓慢的搅动下,向这样获得的表面活性剂溶液中加入1ml具有类别1)全氟聚醚结构,而平均分子量为600的,基本上由一元醇(R′f=CH2OH)构成,而仅含少量二价醇(R′f=Rf=-CH2OH)的醇,然后加入3ml属类别1)的,具有不同分子量而平均分子量为600的各组分的混合物所构成的全氟聚醚所得的微乳状液以下列性质为特征它是在室温下稳定的清彻透明的液体,在制备两个月后对系统作目测检验,上述性质未出现任何变化当将该产物加热到40°~50℃以上时,全氟聚醚趋于分离,且产物变混浊经冷却至室温,此系统自行恢复时间稳定的微乳状液的特性例2用10ml10%的氨水溶液中和18克具有例1所规定的特征的,其化合当量为632的具有全氟聚醚结构的酸,然后加入20ml双蒸馏水将这样获得的溶液加热到70℃,在缓慢搅动下向其中加入6ml属类别1)并具有平均分子量800的全氟聚醚所得到的组合物是一种全氟聚醚微乳状液,其特征是温度稳定范围为60°-90℃将此系统置于室温下会分层为其两个组分水和油,经加热至温度稳定范围中,全氟聚醚又会自行增溶例3向0.5ml具有类别1)的全氟聚醚结构(Rf=-CH2OH)的,平均化合当量为600的醇中加入4ml如例1所述而制得的酸的碱溶液,该酸具有类别1)的全氟聚醚结构,平均化合当量为466,然后加入0.5ml双蒸馏水,3ml属类别1)的,分子量为600的全氟聚醚及0.1ml 1M的KNO3可发现这样制得的组合物在15°~23°范围内是仅由一种乳白色的相构成的在此温度范围之外,水和全氟聚醚分层当该系统被重新置于其存在的温度范围时,PFPE又自行增溶例4向2ml如例1所述而制得的,有全氟聚醚结构的表面活性剂的碱溶液中加入0.1ml属类别1)的全氟聚醚结构,平均化合当量为600的醇,和0.2ml属类别2)的中性的,平均分子量为700的全氟聚醚这样制得的系统是单一清彻透明的,在室温下稳定的,由增溶的中性全氟聚醚构成的相例5制备一种含10ml属类别1)的全氟聚醚结构而平均化合当量为690的酸,10ml 10%(重量)的NH3,6ml纯乙醇和20ml双蒸馏水的溶液向该溶液加入6ml属类别1)的,平均分子量为600的全氟聚醚油该系统由单一透明相构成,并在室温下是稳定的例6通过按顺序油,酸,水,氨,乙醇加入各组分再制例5所述的系统在此情况下也得到一个系统,在该系统中全氟聚醚被增溶例7将3ml双蒸馏水和0.8ml纯乙醇加到平均化合当量为500(平均分子量为1000),并具有属类别2)的全氟聚醚结构的1.53克的二元羧酸铵盐中向所得到的溶液加入0.3ml属类别1)的平均分子量为600的全氟聚醚油所得到的是一种在室温下稳定,在其中油被增溶的透明的组合物例8.将1ml于例2中所述的增溶组合物置于70℃的温度下,再用1ml双蒸馏水稀释所得到的全氟聚醚是静止的,在组合物中被增溶的,并在40°~70℃的温度范围内是稳定的,例91ml例2所述的被增溶系统被置于70℃的温度中,再用2ml双蒸馏水稀释得到一种静止的,由被增溶的全氟聚醚构成的,在35°~68℃的温度范围内稳定的系统例10按例5所述的方法制备了一种溶液,在缓慢的搅动下向此溶液加入4ml属类别1),平均分子量为800的全氟聚醚油获得了一种由单一透明相构成,在室温下稳定的溶液实例11按例5所述的方法制备了一种溶液在电磁搅拌下向所说的溶液加入2ml属类别1),平均分子量为1500的全氟聚醚油,获得了一种由单一透明相构成,在室温下稳定的溶液油的增溶缓慢,但可通过加热加速例12按例5所述方法制备了一种溶液在电磁搅拌下向该溶液加入0.5ml属类别1),平均分子量为3000的全氟聚醚油得到一种由单一相构成,在50℃的温度下是透明的溶液油增溶缓慢例13向以例1所述方法制备的,有全氟聚醚结构的2ml表面活性剂碱溶液加入0.1ml有属类别1)全氟聚醚结构,平均化合当量为600的一种醇,及0.2ml属类别3)全氟聚醚结构,平均分子量为610的中性全氟聚醚获得一种仅由一个清彻透明相构成,在室温下稳定的系统例14向10ml浓度为360g/l的全氟辛酸铵溶液加入0.5ml有全氟聚醚结构,平均化合当量为780的醇,2ml 1M KNO3溶液,以及0.5ml属类别3),平均分子量为610的全氟聚醚油,该系统由单一的,在>32℃的温度下是透明的相构成该系统在温度>85℃时静止稳定例15将1ml有类别1)(R′l=-CF2COOH)全氟聚醚结构,平均化合当量为694的酸用1ml NH3水溶液〔10%的NH3(重量)〕中和,再加入0.5ml H2O和0.25ml辅助表面活性剂H(CF2)6CH2OH然后将1.4ml平均分子量为800,属类别1)结构的PFPE与之混合就得到一种在20°~85℃范围内稳定的,W/O型微乳状液,其组分为表面活性剂+辅助表面活性剂=35.6%(重量)含水相=23.8%(重量)PFPE800=40.6%(重量)再加入1.2ml PFPE 800得到一种在25°~85℃范围内稳定的微乳状液再向所得的微乳状液中加入0.5ml水,形成一种在35°-75℃范围内稳定的W/O型微乳状液例16用1.1ml NH3水溶液〔含NH310%(重量)〕使1ml有类别1)全氟聚醚结构,平均化合当量为570的羧酸成盐,再用3ml水稀释作为辅助表面活性剂,向其中加入有类别1)全氟聚醚结构的,平均分子量为690,有端基R′f=-CH2OH的醇的衍生物,然后加入1ml1摩尔的HNO3水溶液向该混合物中加入2ml类别1)的,选自那平均分子量分别为600,650,800和900的全氟聚醚(PFPE)所有的被使用的全氟聚醚的比重大约是1.8g/ml在所有的情况下,所获得的混合物的PH值大约是9,其百分比组成是表面活性剂+辅助表面活性剂=26.0%(重量)水=39.4%(重量)全氟聚醚=34.6%(重量)所获得的微乳状液的稳定范围是PFPE(平均分子量) 稳定范围℃600 36-48650 35-48800 30-43900 33-44例17向5ml平均分子量为650的类别1)的全氟聚醚中加入有全氟聚醚结构和羧基官能团(R′f=-CF2COOH),并仅含有少量二元羧酸(Rf=R′f=-CF2COOH),平均化合当量为735的酸5.40g再用1ml含10%(重量)NH3的氢氧化铵水溶液使其盐化通过把试样加热到40℃,使含水相在油中达到全溶通过冷却至室温,样品分为两相,但再将样品加热到40℃以上,含6.5%(重量)的水的微乳状液又自行形成例18向6.56ml有属类别1)的全氟聚醚结构,平均化合当量为700的羧酸铵盐中,加入5ml与例17所述相同的全氟聚醚和3ml水,结果获得一个在30℃以上是稳定的单一透明相这样的微乳状液可用全氟聚醚稀释至多达其原体积的4倍在这种情况下获得一种在室温下无限期稳定的微乳状液例19在有5.34g羧酸铵盐表面活性剂存在时,用5ml如例17所述的全氟聚醚溶解3ml水该羧酸铵盐表面活性剂具有属类别1)的全氟聚醚结构,平均化合当量为600这样自行形成一种在高于11℃时稳定的微乳状液例20在有1ml有属类别1)的全氟聚醚结构,平均化合当量为694,并用含20%(重量)NH3氢氧化铵水溶液0.6ml中和过的羧酸和0.4ml叔丁基醇存在的情况下,用3.4ml平均分子量为600,属类别1)的全氟聚醚溶解2ml的水,结果获得一个在低于30℃时稳定的透明相例21在2ml有属类别1)的全氟聚醚结构,平均化合当量为680羧酸存在时,用5ml的平均分子量为800,属类别1)的全氟聚醚溶解1.1ml水和含10%(重量)NH3的氢氧化铵溶液,通过简单地将各组分混合而获得一种在室温下稳定的透明液体;通过加热到35℃以上,发生分层而成为两相,且产物变浑浊;经冷却到35℃以下,产物重新转变为长期稳定的微乳状液这种含水7.9%的微乳状液最多能溶解11.1%的水,随之其存在范围就减小到28℃以下通过加入由类别1)的全氟聚醚衍生的,分子量为700的醇可扩展其稳定范围实际上加入1.3%(重量)的醇便足以使获得的微乳状液在65℃的以下是无限稳定的例22向2ml属类别1)的,分子量为800的全氟聚醚中加入1ml有属类别1)全氟结构,分子量为690的表面活性剂,1ml10%(重量)的NH3以及0.1Ml 1-壬醇结果获得在0°到>90℃的温度范围内稳定的单一透明相通过再加入0.1ml水,稳定范围为1℃左右至62℃例23由5ml平均分子量为800的全氟聚醚,1.5ml平均化合当量为636,PFPE结构的羧酸以及0.5ml含10%(重量)NH3的氢氧化铵溶液构成的基体,在整个试验温度范围内(由15-20℃至90-95℃)是透明的,并且它含有4.0%(重量)的含水相及74.1%(重量)的油相该基体可可逆地溶解水,并具有下列性能加入的水 含水相的重量 W/OF型微乳状液的存在ml 百分比W% 范围(W/OF=水混于油型)0.1 4.8 T≥31℃0.2 5.6 T≥45℃0.4 7.1 T≥63℃例24向例23所述的基体加入0.2ml甲醇该系统在整个试验温度范围内是液态的和均质的(水=4%),它能可逆地微分散水,显示出下列性能加入的水 含水相的百分比 W/OF型微乳状液的存在ml (重量)W% 范围(W/OF=水混于油型)0.1 4.8 任何温度0.2 5.5 T≤73℃0.4 7.0 T≤67℃0.6 8.4 T≤62℃1.0 11.1 36°≤T≤59℃1.4 13.7 32°≤T≤70℃2.2 18.4 28°≤T≤37℃例25向在例23中所述的基体加入0.2ml乙醇,结果获得一个在整个试验温度范围内是液态的,均质的系统,它能可逆地微分散水,具有下列性能加入的水 含水相的百分比 W/OF型微乳状液的存在ml (重量)% 范围(W/OF=水混于油型)0.2 5.5 任何温度0.6 8.4 任何温度1.0 11.1 23°≤T≤85℃
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:含全氟聚醚的微乳状液的制作方法本发明涉及以全氟聚醚为基的微乳状液,它们在一定的温度范围内是永久稳定的,并大体上由均相的透明的或乳白色的液体组成,它们含有-一种含水液体,-一种全氟聚醚,-一种氟化表面活性剂并且还任意地含有一种C1-C12的烷醇(最好含1至2个碳原子)或一种最好具有全氟聚醚结构的氟化醇,或由一个部分地或完全地氟化链构成的醇。此外任意的合适的添加剂是可溶于水的盐,它们能改变含水溶液的离子强度。在本发明中叙述时随时使用的术语“微乳状液”指的是一种透明的或微呈乳白色的液态物质,在其中与形成连续相的液体不溶混的液体以微分散的微滴形式存在,微滴的尺寸不大于2000 ,或该液体在表面活性剂的混合物中被溶液化。在其中两个不溶混的相都是连续的三维薄膜形式存在的微乳状液结构被认为是可能的(参看“微乳状液的理论与实践”-Microemulsion Theory and Practice,Academic Press 1977)。该微乳状液被认为是这样的系统,它们在已确定的温度范围内是热力学稳定的,并且在其稳定的温度范围中将各组分相混合而形成,而不必象在通常乳状液的情况下对系统提供可观的分散能。如已知的那样,后者是不可逆型的动力学稳定系统,在这个意义上,液相分离一旦发生,就不可能以简单的混合再次形成乳状液。当该微状液离开它能存在的温度范围时,它们趋于分成两相;然而,当它们被重新置入此范围时,通过简单的混合就重新自行形成该微乳状液。实际上,按照本发明的微乳状液在其稳定范围内是无限期稳定的。这个特性是本发明的系统与常规乳状液的区别,常规乳状液的特征是动力稳定而不是热力学稳定。在常规乳状液的情况下,为了得到分散体,总是需要使用高分散能(如Ultraturrax,超声快速分散方法)。有一些已知的特种类型全氟化化合物的含水乳状液例如USP3778381叙述了含一个或两个全氟异丙氧基氟化化合物的微乳状液,所说的微乳状液用含1至4个碳原子的氟卤碳化物作载体而制得,该载体在制备过程结束时由微乳状液中被蒸发出来。欧洲专利51526叙述了使用非离子氟化表面活性剂而制备的全氟碳氢化合物的含水微乳状液,该表面活性剂之所以被选用是因为它具有形成一个使微乳状液在其中是稳定的温度范围的功能。正如于此已述那样,认为该乳状液以当两种不相溶混的液体之间的界面张力接近于零时,该乳状液是热力学稳定的,并能自行形成为特征。在这些条件下,该微乳状液事实上可以通过将各组分简单混合而获得,而且与各组分的加入顺序无关。
然而,微乳状液形成的条件未能弄清,它们主要取决于液体和表面活性剂的分子特性。
特别是,在文献中报导的大多数实例都涉及典型的碳氢化合物系统,其中碳氢化合物相是由纯化合物构成。
因而它们都是“单分散的”系统。
在技术文献中未见报导过含全氟聚醚的微乳状液。已知的商业类型的全氟聚醚是由具有不同分子量的产物的混合物构成的(多分散系统)。在多分散系统的情况下,表面活性剂的选择要复杂得多,通常认为这是由于被使用的优选型表面活性剂的类型与每个单独组分是不同的,这种不同取决于它们的分子量。
在意大利专利申请NO,20161A/85中,申请人对含水全氟聚醚作了如下叙述然而在这种情况下,该乳状液是用一种附加的油作载体而制成的。因而上述乳状液是一种三相乳状液油/水/全氟聚醚,此外,它不是热力学稳定的,事实上,乳状液的分层是它的一种不可逆的特性。
显然,有可得到的微乳状液代替乳状液是十分有利的,因为制备前者不需要高的分散能,它们是可复原的,而且在时间上是无限稳定的。而在制备后者时必须记住各组分的混合顺序,并供给高的分散能,其稳定性也是有期限的,并且当由于变质导致它们发生相分离时,在很多情况下甚至使用了在其制备时所需要的高能量也不能使之复原到初始状态。
现已惊异的发现,在氟化表面活性剂和任选的氟化醇或短链烷醇有合适浓度时,可能获得多氟聚醚的,并以各化合物的混合物形式存在的微乳化液,这些化合物具有相同的分子结构,但在一个宽的平均分子量的范围中分子量不同(多分散系统)。使用任选的可溶于水的盐,如KNO3可能是有效的,它们的功能是增加含水相的离子强度并改变不溶混的液体间的界面张力。
适于形成本发明目的的微乳状液的全氟聚醚所具有的平均分子量为400至10000,并且最好是500至3000,它们属于下列类别中的一种或多种1)
它具有随意分布的全氟氧化烯个体,其中彼此相同或不同的Rf和R′f是-CF3、-CF2F5、-C3F7,而m,n,p具有满足上述平均分子量条件的值;
2)RfO(CF2CF2O)n(CF2O)mR′f它具有随意分布的全氟氧化烯个体,其中彼此相同或不同的Rf和R′f是-CF3或-C2F5,而m、n具有满足上述条件的值;
3)
它具有随意分布的全氟氧化烯个体,其中彼此相同或不同的Rf和R′f是-CF3,-C2F5或-C3F7,而m、n、p、q具有满足上述条件的值;
4)
其中彼此相同或不同的Rf或R′f是-C2F5或-C3F7,而n具有满足上述条件的值。
5)RfO(CF2CF2O)nR′f其中彼此相同或不同的Rf或R′f是-CF3,-C2F5,而n具有满足上述条件的值;
6)RfO(CF2CF2CF2O)nR′f其中彼此相同或不同的Rf和R′f是-CF3或-C2F5或-C3F7,n具有满足上述条件的值;
其中Rf,R′f是全氟烷基,R″f是F或全氟烷基,n具有满足上述平均分子量范围的值,类别1)的全氟聚醚在商业中是已知的,其商标为Fomblin y或Galden 类别2)的全氟聚醚的商标为Fomblin z,它们全都是Montedison生产的。
类别4)在商业中已知的产品是Krytox (Du Pont)。类别5)的产品在US Patent 4523039中,或在J.Am、Chem.SoC.1985.107.1197-1201中已被述及。
类别6)的产品由Daikin在欧洲专利EP148482中叙述。
类别3)的全氟聚醚是按USP 3665041制备的。
类别7)的全氟聚醚可按专利申请PCT NO WO 87/00538制备。
构成形成本发明目标的微乳状液的氟化表面活性剂可以是离子或非离子的,详列如下
a)含5至11个碳原子的全氟羧酸及其盐;
b)含5至11个碳原子的全氟磺酸及其盐;
c)在欧洲专利申请0051526中指明的非离子表面活性剂;
d)由全氟聚醚衍生的一元或二元羧酸及其盐;
e)含有连接在聚氧乙烯链上的全氟聚醚的非离子表面活性剂;
f)全氟化阳离子表面活性剂,或由具有1,2或3个疏水物链的全氟聚醚衍生的表面活性剂。
以宏观的观点看,本发明的微乳状液表现为一个单一的,透明或乳白色的相,该相在被确定的温度范围内稳定,该范围取决于PFPE油的结构浓度和平均分子量,取决于表面活性剂的类型和浓度,取决于可能存在的醇和电介质,并且一般还取决于含水相的组分。
这些微乳状液可是在水中的全氟聚醚(油相),其中连续相由含水液体(或水溶液)形成。而分散相由全氟聚醚(PFPE)以微分散颗粒的形式形成,颗粒尺寸一般为50至2000
之间,或者这些微乳状液是水在PFPE中的类型的,其中分散相由含水液体(或水溶液)以微分散颗粒的形式形成,其颗粒尺寸一般在50至2000
之间。
当三种基本组分的混合物含有的含水液体的量(按体积)高于PFPE的量时,就获得第一种类型的微乳状液。而当PFPE的量比含水液体量占优势时,则更可能形成第二种类型的微乳状液。
在很多情况下,对于这两类微乳化液而言添加已述类型的氟化的或未氟化的醇都是适宜的这种添加物被称为辅助表面活性剂。
在某些情况下,向组合物分别添加PFPE或水,和/或改变组合物的温度,可以使第一类微乳状液转化为第二类微乳状液,反之亦然。
将微乳状液由一种类型转化为另一种类型的过程是通过一个过渡状态而产生的,在此中很难说明哪一个是连续相,哪一个是分散相。
我们已经弄清,含全氟聚醚的微乳状液的结构和特性是由几个参数确定的,特别是-表面活性剂的类型及其化学和物理性质;
-表面活性剂和可能的多分散体的分子量;
-全氟聚醚油的分子量;
-辅助表面活性剂的类型和浓度;
-温度;
-电介质的浓度。
例如,我们可以假定“水混于油”(W/O)型的微乳状液的形成是被这样的表面活性剂促进的,该表面活性剂所具有的疏水峰尾比适于形成“油混于水”(O/W)型的微乳状液的表面活性剂的疏水峰尾长。
首先我们可以假设,如图1所示,至少当表面活性剂和辅助表面活性剂的含量相当低,最好低于70%(重量)时,在恒定的温度和离子力的情况下,连续相是占多数的相。
通常微乳状液可以用连续相的液体稀释至其保持在稳定范围内为止。例如在这样的情况下表面活性剂由羧酸构成,它有全氟聚醚的结构,平均化合当量为634,并且存在着有C2H5OH作为辅助表面活性剂,表面活性剂/辅助表面活性剂的摩尔比=0.3,这时我们可获得全氟聚醚(PFPE)混于水的微乳状液,它们具有如图2示出的包含在三个不同温度范围内的组分。由于它们可用水大量稀释,并且所含的PFPE油少于30%(重量),所以该微乳状液是O/W型的。
如图3所示,同样的表面活性剂在有醇H(CF2)0CH2OH存在时,使一种0.1M HNO3的水溶液增溶于PFPE油,而得到一种微乳状液,其组分表面活性剂+辅助表面活性剂40%(重量)、含水相15%(重量)、PFPE油45%(重量)。所获得的微乳状液是W/O型的实际上,仅仅加入PFPE油就可由图3的点a达到点b。我们已查明通过较多地使用被稀释的含水溶液,即0.01M的HNO3,就能将较高数量的含水相增溶于PFPE油中。关于占多数的相是一连续相,以及该系统可用此相稀释的假设是对微乳状液作结构分析的经验方法的基础。此法必须在表面活性剂的含量不太高时〔小于70%(重量)〕方可使用,这是因为使用高含量的表面活性剂(以及任选的辅助表面活性剂)时,微乳状液可用油相或水相稀释此时为查明连续相该法是无效的。
能在相图中任一部位产生双连续薄膜结构也是可能的(参看B.W.Ninham.S.J.Chen等人in J Phys 90,842-847,1986)在此情况下,为查明连续相的仅有的方法是基于稀释的方法。在此情况下,当双连续系统含有大致相同量的油相和含水相时,上述方法不易使用;但对于这样的系统,连续相和分散相之间的区别也无意义了。
在各组份共增溶的情况下(分散度为分子级),确定该系统的结构(分散相或双连续相)就不再可能了,但对这样的系统,W/O或O/W间的区别也是无意义的。
我们还注意到,由于加了PFPE油在O/W型的微乳状液的情况下的相转化。此转化过程被示于与图4中的与组分曲线有关的图表中。
缩写词S=表面活性剂(一元羧酸铵盐,该酸具有平均分子量为636的类别1)的全氟聚醚结构)。
PFPE800=类别1的全氟聚醚,平均分子量为800。
组合物a(O/W微乳状液,稳定范围60-76℃)S=30.5%(重量)H2O=50.9%(重量)PFPE800=18.6%(重量)通过加入PFPE800和S而获得一种组合物b(o/w型微乳状液,稳定范围60°~70℃),其中S=30.9%(重量)H2O=42.9%(重量)PFPE800=26.2%(重量);
通过进一步加入PFPE800,在t>58℃获得一种透明的凝胶体,即组合物C,其中S=29.4%(重量)H2O=40.8%(重量)PFPE800=29.9%(重量)。
通过进一步加入PFPE800和S获得一种三相系统(在95℃透明/白色/透明),即组合物d,其中S=19.6%(重量)H2O=19.3%(重量)
PFPE800=61.1%(重量)通过进一步加入S,获得组合物e的,在t>58℃稳定的W/O型的微乳状液,其中S=28%(重量)H2O=17.3%(重量)PFPE800=54.8%(重量)通过进一步加入PFPE800,获得组合物f的在t>56℃稳定的W/O型的微乳状液,其中S=25.5%(重量)H2O=15.6%(重量)PFPE800=59.1%(重量)在这种情况下,由O/W型微乳状液转变为W/O型微乳状液的过程是通过形成一个中间相而产生的,该中间相具有显示出形成了液态各相异性晶体(双折射的)高粘度。
上述的考虑和说明向本


以全氟聚醚为基的微乳状液,含有——一种含水介质;——一种平均分子量为400至10000,并且具有 数个全氟烷基端基的全氟聚醚;——一种氟化表面活性剂,并且还任意地含有一种短链氢化醇或氟代烷醇, 或者一种可溶于水的盐,所说的微乳状液在一定的温 度范围内是永久稳定的,在此范围内它们可以通过各 组分的简单混合而制得。



查看更多专利详情