早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

由含有修复和偏移裂纹的基体相的陶瓷基体复合材料制成的部件的制造方法

  • 专利名称
    由含有修复和偏移裂纹的基体相的陶瓷基体复合材料制成的部件的制造方法
  • 发明者
    R·帕耶, N·埃贝林-富克斯, E·菲利普, S·贝特朗
  • 公开日
    2014年10月1日
  • 申请日期
    2007年10月16日
  • 优先权日
    2006年10月17日
  • 申请人
    赫拉克勒斯公司
  • 文档编号
    C04B35/80GK104072182SQ201410302217
  • 关键字
  • 权利要求
    1.一种制造陶瓷基体复合材料的部件的方法,所述方法包含如下步骤 ?形成多孔纤维增强结构; ?将含有构成复合材料基体的元素的粉末引入纤维结构的孔隙中;以及 ?通过引起在所述粉末或在至少一部分所述粉末与至少一种提供的另外的元素之间的反应发生,从而由所述粉末形成至少基体的主要部分;所述引入纤维结构的粉末和提供的另外的元素包含形成至少一个包括硼化合物的修复不连续基体相和至少一个包括具有层状结构的化合物的裂纹偏移不连续基体相的元素2.根据权利要求1所述的制造陶瓷基体复合材料的部件的方法,其中所述形成裂纹偏移和不连续基体相的元素包括元素B和C,和元素Si和Ti的至少一种3.根据权利要求1所述的制造陶瓷基体复合材料的部件的方法,其中至少基体的主要部分通过至少一部分引入所述纤维结构的所述粉末与至少一种提供的另外的元素之间的化学反应形成4.根据权利要求3所述的制造陶瓷基体复合材料的部件的方法,其中所述提供的另外的元素为硅、钛或锆的至少一种5.根据权利要求3所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末和所述提供的另外的元素包含至少元素B、C、Si和Ti以形成至少一个包括硼化合物的修复不连续基体相和至少一个包括由化学反应得到的化合物Ti3SiC2的裂纹偏移不连续基体相6.根据权利要求5所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含至少元素B、C和Ti,且至少元素Si以熔融硅的形式提供7.根据权利要求5所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含至少元素B、C和Ti,且分别以熔融硅和熔融钛或含钛合金的形式连续提供元素Si然后元素Ti8.根据权利要求6所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含碳化钛和碳化硼9.根据权利要求5所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含至少元素B、C和Si,且至少元素Ti以熔融钛或熔融含钛合金的形式提供10.根据权利要求5所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含至少元素B、C和Si,且分别以熔融钛或熔融含钛合金和熔融硅的形式连续提供元素Ti然后元素Si11.根据权利要求9所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含碳化硅和碳化硼12.根据权利要求5所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含至少元素B和C,且至少元素Si和Ti以熔融硅和钛或钛合金或化合物的形式同时提供13.根据权利要求1或权利要求2所述的制造陶瓷基体复合材料的部件的方法,其中至少基体的主要部分通过烧结所述引入纤维结构的粉末形成14.根据权利要求13所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含裂纹偏移化合物Ti3SiC2的粉末15.根据权利要求13所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末包含裂纹偏移化合物BN的粉末16.根据权利要求13所述的制造陶瓷基体复合材料的部件的方法,其中所述烧结通过快速烧结或SPS烧结法进行17.根据权利要求1所述的制造陶瓷基体复合材料的部件的方法,其中在将所述粉末引入纤维硅之前,界面涂层在纤维结构的纤维上形成18.根据权利要求17所述的制造陶瓷基体复合材料的部件的方法,其中形成反应阻挡层的保护涂层在界面涂层上 形成19.根据权利要求1所述的制造陶瓷基体复合材料的部件的方法,其中所述引入纤维结构的粉末具有I μ m以下的平均尺寸20.根据权利要求19所述的制造陶瓷基体复合材料的部件的方法,其中所述粉末具有20nm至10nm的平均尺寸21.一种由陶瓷基体复合材料制成的部件,其中所述基体具有通过基于粉末的反应过程得到的主要部分,并包含至少一个包括分散于基体内的硼化合物的修复不连续基体相和至少一个包括分散于基体内的具有层状结构的裂纹偏移化合物的不连续基体相22.根据权利要求21所述的由陶瓷基体复合材料制成的部件,其中所述基体包含不连续相,该不连续相包括裂纹偏移化合物Ti3SiC223.根据权利要求21所述的由陶瓷基体复合材料制成的部件,其中所述基体包含不连续基体相,该不连续基体相包括裂纹偏移化合物BN
  • 技术领域
    [0002]本发明涉及制造陶瓷基体复合材料(CMC)部件
  • 专利摘要
    本发明涉及由含有修复和偏移裂纹的基体相的陶瓷基体复合材料制成的部件的制造方法。具体地,本发明涉及包含如下步骤的方法形成多孔纤维增强结构;将粉末引入所述纤维结构的孔隙中,所述粉末含有复合材料基体的组成元素;由所述粉末通过粉末和/或至少一种提供的另外的元素之间的反应形成所述基体的至少主要部分;引入纤维结构的粉末和提供的元素包含用于形成至少一种包含硼化合物的不连续修复基体相和至少一种包含具有裂纹偏移层状结构的化合物的不连续基体相的元素。由此提供简单并迅速地获得包括至少一个修复基体相和至少一个裂纹偏移基体相的陶瓷基体复合材料的方法。
  • 发明内容
  • 专利说明
    由含有修复和偏移裂纹的基体相的陶瓷基体复合材料制成的部件的制造方法
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
由含有修复和偏移裂纹的基体相的陶瓷基体复合材料制成的部件的制造方法[0001]本申请是申请日为2007年10月16日,名称为“由含有修复和偏移裂纹的基体相的陶瓷基体复合材料制成的部件的制造方法”的中国专利申请N0.200780038528.6的分案申请。 [0003]CMC由耐火纤维增强件与陶瓷基体一起形成,所述耐火纤维增强件由碳或陶瓷纤维制成。CMC部件的制造通常包含制备构成复合材料的纤维增强件的纤维结构或预成型体,和用基体的陶瓷材料使预成型体致密化。 [0004]CMC表现出可适用于构成结构部件的机械性能,且它们表现出在氧化环境中在高温下保持这些性能的能力。 [0005]然而,无论是在制造过程中还是之后暴露于热机械应力,CMC都经受陶瓷材料破裂。希望避免裂纹扩展,特别是扩展至纤维,因为这会使纤维断裂,从而减弱复合材料的机械性能。已知在纤维-基体界面涂层中涂布纤维,所述纤维-基体界面涂层能够偏移基体中的裂纹扩展并到达界面涂层,同时还确保适于赋予复合材料以所需机械性能的纤维与基体之间的连接。裂纹偏移界面涂层通常由热解碳(PyC)或氮化硼(BN)制得,特别如美国专利N0.4752503所描述。也已知将PyC或BN裂纹偏移连续相置于陶瓷基体相之间,如美国专利N0.5079039所描述。 [0006]还希望裂纹的出现不会使得氧化大气易于进入材料的芯部。这种进入(access)对纤维(若所述纤维为碳纤维)以及界面涂层有损害效果。已知为此目的而在基体内提供一个或多个修复相,即能够修复在基体中出现的裂纹的相。这种修复基体相通常由化合物,特别是硼化合物制成,所述化合物适于在氧气的存在下形成在一定温度范围内进行修复作用的呈糊状的玻璃组合物。特别是,可参考美国专利N0.5965266,其描述了在基体内形成连续的自修复相。 [0007]在上述文献中,依靠化学气相渗透(CVI)技术制备具有裂纹偏移性能或修复性能的界面或基体相。所述技术已被很好了解,但其需要极长的持续时间并因此非常昂贵。此外,使用CVI以形成不同类型的基体相需要变化至所用反应气体的性质以及CVI方法的参数(温度、压力、气体流动速度等)。
[0008] 美国专利N0.5094901提出在通过CVI制备纤维-基体界面之前以及在形成陶瓷基体之前将适于产生修复作用的填料引入纤维结构。所述填料通常为一种或多种能够在氧气存在下形成B2O3和可能的S12的材料。能使用B4C、SiB6或BN的粉末,其粉末被引入溶解于溶剂中的树脂溶液中的分散态的纤维结构,纤维结构随后用所得悬浮液浸溃。在形成界面之前碳化所述树脂。应观察到构成B2O3和可能的S12的前体的粉末仅被置于增强纤维结构的纤维和纤维-基体界面上,基体随后通过CVI形成。
[0009]在美国专利N0.5962103中,获得具有SiC-Si陶瓷基体的复合材料的方法包含在纤维结构的纤维上形成纤维-基体界面涂层,引入粉末形式的C或SiC或C+SiC和硼化合物,以及渗入熔融硅。由此获得含有具有自修复性能的基体的复合材料。



[0010]本发明的目标是提供使简单并迅速地获得CMC成为可能的方法,所述CMC包括至少一个修复基体相和至少一个裂纹偏移基体相。
[0011]该目标通过包含如下步骤的方法实现:
[0012]?形成多孔纤维增强结构;
[0013].将含有构成复合材料基体的元素的粉末引入纤维结构的孔隙中;以及
[0014].通过引起在所述粉末或在至少一部分所述粉末与至少一种提供的另外的元素之间的反应发生,从而由所述粉末形成至少基体的主要部分;
[0015]所述引入纤维结构的粉末和提供的另外的元素包含形成至少一个包括硼化合物的修复不连续基体相和至少一个包括具有层状结构的化合物的裂纹偏移不连续基体相的元素。
[0016]本文所用的术语“反应”涉及:
[0017].在一种或多种引入纤维结构的粉末与至少一种随后提供的另外的元素之间的化学反应,例如与至少一种另外的元素(如熔融硅,熔融钛,或含有硅或钛的熔融合金,或熔融锆)的反应;和
[0018]?烧结引入纤维结构的粉末,例如使用已知为放电等离子烧结(SPS)的脉冲电场的热烧结。
[0019]本文所用的术语“不连续基体相”意指由分离的元素或在基体内分散的“颗粒”组成的基体相,即不形成在基体内连续延伸的相,如通过CVI获得的基体相的情况。
[0020]本文所用的术语“具有层状结构的裂纹偏移化合物”意指具有由薄片组成的结构的化合物,且其能通过散逸破裂能(其通过引起结构薄片分离)而阻挡裂纹的直接扩展。
[0021]所述方法是非凡的,其在于所述基体主要通过使用引入纤维结构的粉末的反应形成,因此比进行CVI致密化方法更迅速,且在于该或每个(the or each)修复基体相和该或每个(the or each)裂纹偏移基体相均为分散于陶瓷基体内的不连续相。本 申请人:观察到不仅修复功能,而且更意想不到的裂纹偏移功能都能由不连续基体相的分离的元素有效履行,且不需要由CVI法获得的连续基体相。
[0022]有利地,所述形成修复和裂纹偏移不连续基体相的元素包括元素B和C,以及元素Si和Ti的至少一种。
[0023]在本发明的特定实施例中,至少基体的主要部分通过至少一部分所述引入纤维结构的粉末和至少一种提供的另外的元素之间的化学反应形成。
[0024]所述提供的另外的元素可为硅、钛或锆的至少一种,该元素以其本身(as such)或以化合物或合金的形式提供。
[0025]有利地,所述引入纤维结构的粉末和提供的另外的元素包含至少元素B、C、Si和Ti以形成至少一个包括硼化合物的修复不连续基体相和至少一个包括由化学反应得到的化合物Ti3SiC2的裂纹偏移不连续基体相。
[0026]在第一变体中,所述引入纤维结构的粉末包含至少元素B、C和Ti,且至少元素Si以熔融硅的形式提供。还可能以熔融硅和熔融钛或钛合金的形式分别提供元素Si然后元素Ti。元素B、C和Ti可为碳化钛和碳化硼的形式。
[0027]在第二变体中,所述引入纤维结构的粉末包含至少元素B、C和Ti,且至少元素Ti以熔融钛或含有钛的熔融合金的形式提供。还可能以熔融钛或钛合金和熔融硅的形式分别提供元素Ti 然后元素Si。元素B、C和Si可为碳化硅和碳化硼的形式。
[0028]在第三变体中,所述引入纤维结构的粉末包含至少元素B和C,且至少元素Si和Ti以熔融硅和钛或钛合金的形式同时提供。
[0029]在本发明另一实施例中,至少基体的主要部分通过烧结所述引入纤维结构的粉末形成。
[0030]烧结可通过SPS烧结法进行。
[0031]所述引入纤维结构的粉末可包含碳化钛硅(Ti3SiC2)(其为偏移裂纹的化合物)的粉末,和/或氮化硼(BN)(其为偏移裂纹的化合物)的粉末。
[0032]在将粉末引入纤维结构之前,界面涂层可在纤维结构的纤维上形成,例如PyC或BN的涂层。所述界面涂层可通过CVI形成。该界面涂层可有助于保护纤维结构的纤维(特别是当所述纤维由碳组成时),当至少基体的一部分通过化学反应制得时,可能消耗一部分界面涂层。例如SiC的保护涂层可任选地例如通过CVI在界面涂层上形成,从而构成反应阻挡层并避免界面涂层在通过化学反应形成至少一部分基体的过程中被消耗。
[0033]能使用各种本身已知的技术将粉末引入纤维结构,如电泳、真空下的粉末抽吸,和利用粉末在液体中的悬浮液的浸溃。
[0034]优选地,所述粉末显示I微米以下(μ m),通常为20纳米(nm)至10nm的平均直径。
[0035]本发明还提供能通过上述方法获得的陶瓷基体复合材料部件,在该部件中,所述基体具有通过基于粉末的反应过程得到的主要部分,并包含至少一个包括分散于基体内的硼化合物的修复不连续基体相和至少一个包括分散于基体内的具有层状结构的裂纹偏移化合物的不连续基体相。
[0036]具有层状结构的化合物可为Ti3SiC2和/或BN。




[0037]在如下详细描述中参考附图,其中:
[0038]?图1和图2为显示在两个特定实施例中在本发明的方法中进行的步骤的简图;
[0039].图3为通过电泳将粉末引入多孔纤维结构的装置的高度示意图;以及
[0040]?图4至图16为显示不连续基体相的形成和在根据本发明获得的CMC材料中的裂纹偏移的显微照片。


[0041]在图1和2的实施例中,本方法的第一步骤10在于形成适于构成待制备的CMC材料部件的纤维增强件的多孔纤维结构。所述增强纤维可为碳纤维或陶瓷纤维,如SiC纤维,可能涂布有碳。
[0042]形成这种增强纤维结构或纤维预成型体的操作本身是众所周知的。三维纤维结构可由如纱、亚麻短纤维或带的单向纤维元素通过缠绕法或通过三维编织(weaving)、编织(braiding)或针织(knitting)法形成。还可能由重叠的和优选连接在一起的二维纤维层例如通过针刺或通过相对于层横向嵌入纱或其他单向元素形成三维纤维结构。所述二维纤维层可为织物,或单向片材,或通过在不同方向上重叠单向片材并将它们连接在一起而形成的真正多向片材。
[0043]有利地,界面涂层在增强纤维结构的纤维上形成。这种界面涂层可以已知的方式由PyC或BN制成,如上所述。所述界面涂层可在制备纤维结构之前或之后通过CVI在纤维上形成。界面涂层的厚度优选为0.1 μ m至2 μ m。
[0044]保护涂层可在界面涂层上形成以保护该界面涂层和其下方的纤维免于当CMC材料基体的制备涉及与提供的另外的元素(如熔融硅或钛)的化学反应时的可能的化学侵蚀。例如,这种形成保护阻挡层的涂层可由SiC制得。所述保护涂层可在制备纤维结构之前或之后通过CVI在界面涂层上形成。保护涂层的厚度优选为0.1 μ m至2 μ m。
[0045]在本发明方法的接下来的步骤12中,其纤维有利地提供有界面涂层和可能的保护涂层的多孔纤维结构的孔隙至少部分通过引入粉末而被填充。
[0046]所用的粉末提供了至少一些形成陶瓷基体的至少主要部分所需的元素,所述陶瓷基体包含至少一个包括硼化合物的修复不连续基体相和至少一个包括具有层状结构的裂纹偏移化合物的不连续基体相。
[0047]引入纤维结构的粉末具有小颗粒尺寸,从而能够渗入纤维结构的孔隙直至其芯部。因此所述粉末的平均直径有利地选择为I μ m以下,优选为20nm至lOOnm。
[0048]各种已知方法可用于将粉末引入纤维结构的孔隙。
[0049]第一种方法在于用含有粉末的悬浮液浸溃所述纤维结构。浸溃可在压力下形成,将纤维结构浸入含有悬浮液的浴中。
[0050]第二种方法在于进行粉末的真空抽吸,其以美国5352484文献中所描述的将碳粉末引入多孔基材的类似方式进行。将含有粉末的悬浮液带至纤维结构的一面,并建立压差以驱使悬浮液穿过所述纤维结构,在纤维结构的另一面进行过滤以将粉末保留在结构中。
[0051]第三种方法在于使用电泳。如图3非常概括地显示,将在所示实施例中为板状形式的多孔纤维结构20浸入容器22中,所述容器含有待引入纤维结构的粉末的悬浮液24。将纤维结构20置于两个例如由石墨制成的电极26和28之间。所述电泳法能用于导电的纤维结构,如由碳纤维或陶瓷纤维制成的纤维结构,例如SiC纤维,当用特别通过热解技术获得的碳涂布时。直流(DC)电力回路30的一端平行连接至电极26和28,另一端连接至纤维结构20。作为结果,带电粉末粒子迁移至纤维结构20并逐渐填充其孔隙。
[0052]干燥在引入粉末之后进行。
[0053]在图1和2的实施例中,可使用陶瓷化合物粉末以直接协助形成一个或多个不需为修复或裂纹偏移的不连续陶瓷基体相。例如,这种粉末可为碳化硅SiC和/或碳化钛TiC的粉末。
[0054] 此外,仍然在图1和2的实施例中,含硼化合物如,特别是:碳化硼B4C ;六硼化硅SiB6 ;二硼化钛TiB2 ;和/或硼化铝A1B2、AlB12可用于协助形成至少一个修复不连续基体相。
[0055]在图1的实施例中,步骤14在预成型体上进行,在此步骤过程中致密化通过与至少一种在熔融下提供的另外的元素的化学反应进行,从而形成不连续基体相,其中所述预成型体在将粉末引入纤维结构之后获得。
[0056]特别地,所述提供的另外的元素可为硅、钛,和/或锆本身或其化合物或合金形式。
[0057]有利地,包括裂纹偏移化合物Ti3SiC2的不连续基体相通过引入纤维结构的粉末(如SiC粉末和/或TiC粉末)和以熔融形式提供的钛或硅之间的化学反应获得。所述SiC粉末和/或TiC粉末则有助于形成SiC和/或TiC陶瓷基体相以及裂纹偏移不连续基体相。
[0058]当引入纤维结构的粉末包含TiC粉末时,硅化化学反应使用熔融硅进行,生成Ti3SiC2、以及SiC和可能的TiSi2:
[0059]3TiC+2Si — Ti3SiC2+SiC
[0060]TiC+3Si — TiSi2+SiC
[0061]SiC还可通过硅与碳之间的反应制得,在界面涂层上不存在形成保护阻挡层的涂层时,所述碳可来自纤维上存在的PyC界面,或可来自引入纤维结构的碳粉末。
[0062]然后可提供熔融钛以通过与SiC和碳的反应增加Ti3SiC2的量,所述碳来自SiC或存在于引入纤维结构的粉末中,或来自在纤维上形成的PyC界面:
[0063]SiC+C+3Ti — Ti3SiC2
[0064]还可生成化合物Ti5Si3和TiC。
[0065]当引入纤维结构的粉末含有SiC粉末时,钛化化学反应用熔融钛进行,生成Ti3SiC2:
[0066]SiC+C+3Ti — Ti3SiC2
[0067]C存在于引入纤维结构的粉末中或来自SiC,或在PyC界面上不存在形成反应阻挡层的涂层时来自PyC界面。还可生成化合物Ti5Si3
[0068]然后可提供熔融硅以通过与TiC的反应增加Ti3SiC2的量,从而降低TiC的量。
[0069]与熔融硅或钛的化学反应通过将熔融态的钛或硅渗透至已在前引入粉末的纤维结构产生。还可能使用熔融态的钛金属合金,例如Ti6Al4V。
[0070]为此,可将纤维预成型体以常规方式与一条硅或钛或钛合金一起置入容器或坩埚。将所述组合(assembly)置入炉中以将其温度升高至超过硅、钛或钛合金的熔点。预成型体无需完全浸入。纤维结构的一部分与熔融硅或钛接触便已足够,然后所述熔融硅或钛通过毛细作用逐渐浸入所述预成型体。渗透可通过在炉中建立低压(通过将炉子连接至真空源)促进。
[0071]同样以常规方式,还可能利用将熔融硅、钛或钛合金通过毛细作用引入预成型体的通道(drain)将预成型体连接至熔融硅或钛或钛合金浴,预成型体的孔隙中的浸溃同样通过毛细作用发生。所述通道可由耐火纤维制成,例如棉芯、带状等形式的SiC纤维或(至少在初始态)碳纤维。这种方法特别描述于文献W02004/076381中。
[0072]选择将硅或钛升至高于其熔点的温度,例如对于硅为1450°C至1500°C且对于钛为1700°C至1750°C。对于如11#14¥的钛合金,其熔点低于钛,并可能采用1650°C至1700°C的温度。
[0073]上述涉及硅化并接着钛化,或相反。在一个变体中,有可能通过同时提供熔融态的硅和钛或钛合金而同时进行硅化和钛化。在前引入纤维结构的粉末则包含至少元素B和C,例如含硼化合物的粉末和碳和/或碳化物(如SiC和/或TiC)的粉末。Si和Ti的同时提供可使用Si和Ti的粉末或Si和Ti合金的粉末,或Si和如TiSi2的Ti化合物的粉末进行。
[0074]当通过提供熔融锆进行锆化时,有可能通过在前将粉末引入纤维结构形成至少一个修复不连续基体相,所述粉末含有具有层状结构的裂纹偏移化合物,如BN。
[0075]在图2的实施例中,在将粉末引入纤维结构的步骤12之后,进行烧结步骤16。
[0076]因此,所述引入纤维结构的粉末需要包含:需要用于形成至少一个修复不连续基体相的含硼化合物;形成至少一个不偏移裂纹的非修复不连续陶瓷基体相的可能的如TiC和/或SiC的化合物,若需要这种陶瓷相;以及直接协助形成裂纹偏移不连续基体相的具有层状结构的化合物。这些化合物特别为Ti3SiC2和/或BN。
[0077]有可能使用无应力的自然烧结或在应力下的烧结(例如通过热压),或优选同时施用电场和压力的热烧结,或SPS烧结。
[0078]这种SPS烧结法本身是已知的。将粉末填充的纤维结构置入由导电材料(通常为石墨)制成的容器中,施用连续或脉冲电场并同时施用压力(通常为10兆帕(MPa)至10MPa)。烧结是温度上升的结果,其显示出被相邻粉末粒子之间所产生的等离子体激励。通过制造形状对应于待制CMC材料部件的纤维增强件的纤维结构,有可能用本发明的方法获得包括至少一个不连续修复相(其包括分散于基体内的硼化合物)和至少一个不连续基体相(其包括分散于基体内并偏移裂纹的具有层状结构的化合物)的陶瓷基体,所述层状化合物特别由Ti3SiC2和/或BN构成。
[0079]本发明的方法可通过致密化纤维结构而用于形成所有的CMC材料基体,所述纤维结构中纤维可具有界面涂层和可能的保护目的的另外的涂层,或者本发明的方法可用于形成陶瓷基体的主要部分,即大部分。在这种情况下,基体的小部分可通过常规CVI法或通过常规液体法(即利用含有如树脂的基体前体的液体组合物的浸溃,接着通过热解转化所述前体)形成。
[0080]这种小部分可特别由用于将纤维连接在一起的初始固结基体相构成,所述纤维的纤维结构足以使纤维足够强到能够被处理而保持形状,仅有小部分纤维结构内的孔隙空间被填充。这种小部分还可能特别由在主要基体已通过反应进行之后制得的最终基体相构成,并为了减少剩余孔隙的目的。
[0081]如下为本发明方法的实施例的描述。
[0082]实施例1
[0083]厚度为3毫米(mm)的板状形式的多孔纤维结构通过三维编织连续碳纤维纱制得,所述纤维结构显示约70%的孔隙体积分数。
[0084]在已制得纤维结构之后,厚度等于约I μ m的PyC界面涂层以公知的方式通过CVI法在纤维上形成。
[0085]将平均尺寸为约150nm的B4C粉末和平均尺寸为约30nm的TiC粉末以对于TiC为11%且对于B4C为2%的体积分数加入乙醇中的悬浮液,所述悬浮液通过搅拌均匀化。
[0086]将所述悬浮液引入图3所示类型的电泳装置的容器中,并将纤维结构浸入电极之间的容器中,所述电极被充电以提供约40伏特/厘米(V/cm)的电场约2分钟(min)。在粉末填充的纤维结构从容器中移出并干燥之后,测量其相对重量增加,并发现所述相对重量增加为约406%,该增加通过计算100 0?-!?) Aitl确定,其中Hi1为粉末填充的干燥纤维结构的重量,m0为在引入粉末之前干燥纤维结构的重量。
[0087]之后,硅化通过引入纤维结构的粉末与在熔融下提供的硅之间的化学反应进行。为此目的,将粉末填充的纤维结构与硅一起置入坩埚,并插入温度升至约1450°C的炉中,同时将炉子附件连接至真空源以促进熔融硅渗入所述纤维结构的芯部。选择硅的量为充足的但无显著过量,以使得如下反应:
[0088]3TiC+2Si — Ti3SiC2+SiC
[0089]随纤维结构中存在的TiC粉末的量而完全发生。在硅化之后,剩余孔隙的体积分数为约17%且达到的相对密度为约2.9。
[0090]X射线衍射(XRD)相图特别显示基体不仅含有Ti3SiC2和SiC相,还含有TiC、TiSi2和TiB2相。除了上述生成Ti3SiC2和SiC的反应之外,假设还发生如下反应:
[0091]C+Si — SiC(C 来自 PyC 界面)
[0092]TiC+3Si — TiSi2+SiC
[0093]B4C+2TiC+3Si — 2TiB2+3SiC
[0094]图4和5的显微照片分别显示所得的致密陶瓷基体以及在小比例尺下的具有特征层状结构的Ti3SiC2颗粒。在图4、5的图例说明及后述中,术语“EPD”和“RMI”分别代表通过电泳引入和沉积粉末的方法(“电泳沉积”)和渗透熔融元素的反应方法(“反应熔渗”)。
[0095]实施例2
[0096]程序如实施例1,但限制硅化使得一旦结束,剩余孔隙的体积分数为约21%,相对密度为约2.5。
[0097]钛化操作通过引入纤维结构的粉末首先与在硅化过程中形成的相之间,然后与以熔融形式提供的钛之间的化学反应进行。为此目的,将在硅化之后获得的部件与一条钛一起置入坩埚,并将其插入温度升至约1725°C的炉中,同时将炉子附件连接至真空源。在钛化之后,剩余孔隙的体积分数为约8%且相对密度增加至约3.6。
[0098]XRD相图显示在基体中特别存在如下相:Ti3SiC2、SiC、TiC、TiB2Ji5SijP Ti。在硅化之后的钛化的作用是通过如下反应增加基体中不连续Ti3SiC2相的量并降低SiC基体相的量:
[0099]SiC+C+3Ti — Ti3SiC2
[0100]C来自PyC界面和/或在硅化过程中形成的碳化物相。
[0101]图6和7的显微照片显示基体中存在Ti3SiC2颗粒的所得基体。更小比例尺下的图8显示Ti3SiC2颗粒偏移在基体中出现的裂纹的效果。
[0102]实施例3
[0103]程序如实施例1,但厚度为约2 μ m的PyC界面在纤维结构的纤维上制得,TiC粉末由平均尺寸为约50nm的SiC粉末代替(在粉末悬浮液中具有相同的体积分数),且硅化由钛化代替。
[0104] 填充SiC和B4C粉末的纤维结构通过与以熔融形式提供的钛的化学反应,以与实施例2相同的方式钛化。获得剩余孔隙分数为约10%且相对密度为约3.5的CMC材料部件。
[0105]XRD相图显示在基体中特别存在如下相:Ti3SiC2、SiC、TiC、TiB2和Ti5Si3, Ti3SiC2化合物通过与实施例2中相同的反应获得:
[0106]SiC+C+3Ti — Ti3SiC2
[0107]C来自PyC界面。
[0108]纤维上的PyC界面的相对较大的厚度允许牺牲一部分界面而不到达纤维。
[0109]图9的显微照片显示所得致密基体。
[0110]实施例4
[0111]程序如实施例3,但钛化通过与钛、铝、钒、Ti6Al4V的熔融合金在约1675°C的温度下进行。在钛化之后,剩余孔隙的体积分数为约5%且相对密度为约3.3。
[0112]XRD 相图显示在基体中存在如下相:Ti3SiC2、SiC、TiC、T1、TiBjP Ti5Si3。
[0113] 图10的显微照片显示所得致密基体。
[0114]Ti6Al4V合金的优点为其使得钛化能够在比使用钛本身时钛化所需的温度更低的温度下进行。
[0115]实施例5
[0116]步骤如实施例3,但限制钛化使得在进行钛化之后,剩余孔隙体积分数为约11%且相对密度为约3.5。
[0117]然后硅化在类似于实施例1中所描述的条件下进行。在硅化之后,剩余孔隙体积分数降低至约8%且相对密度达到约3.4。
[0118]XRD相图显示在基体中存在如下相:Ti3SiC2、SiC、TiC、TiBjP TiSi2。在钛化之后进行的硅化的作用是通过如下反应增加Ti3SiC2不连续基体相的量并降低TiC基体相的量:
[0119]3TiC+2Si — Ti3SiC2+SiC
[0120]图11和12的显微照片显示所得致密基体,以及在更小比例尺下具有层状结构的Ti3SiC2 颗粒。
[0121]实施例6
[0122]直径为约50mm且厚度为约2mm的圆柱形样品形式的纤维结构通过从纤维板上切割获得,所述纤维板通过连续碳纤维纱的三维编织制得。
[0123]在已制得样品之后,厚度为约0.1 μ m的PyC界面涂层通过CVI法在纤维上形成。
[0124]将平均尺寸为约50nm的SiC粉末和平均尺寸为约140nm的BN粉末加入乙醇中的悬浮液,且该悬浮液通过搅拌均匀化,SiC和BN的体积分数分别为约11%和约3%。
[0125]将SiC和BN粉末通过使用如实施例1中的电泳法引入纤维结构样品。在填充粉末并干燥的样品上测得的相对重量增加为约330%。
[0126]之后,SPS烧结在粉末填充的样品上进行。使用约1600°C的SPS烧结温度,有可能得到剩余孔隙分数为约22%且相对密度为约2.35的部件。当在约1650°C的温度下进行SPS烧结时,有可能得到剩余孔隙分数为约16%且相对密度为约2.36的部件。
[0127]图13和14的显微照片显示分别在约1600°C和1650°C的SPS烧结温度下得到的致密基体,且图15在更小比例尺下显示对于在1650°C下的SPS烧结的不连续基体颗粒的平均尺寸和形状。
[0128]作为比较,类似于用于此实施例的纤维结构样品,但具有厚度为约0.3μπι的界面涂层的纤维结构样品通过CVI法用SiC基体进行致密化。有可能得到约15%的剩余孔隙分数和约2.3的相对密度。引入粉末的方法和在1650°C下的SPS烧结使得可能获得非常类似的值,并同时更快进行和能够形成BN的不连续基体相,BN构成偏移裂纹的具有层状结构的化合物以及构成修复不连续基体相的含硼化合物。
[0129]冲击试验(Vickers硬度试验)在于1650°C下SPS烧结之后得到的部件上进行。图16为显示由冲击产生的裂纹和由层状结构BN化合物的存在所提供的裂纹偏移作用的显微照片。

查看更多专利详情