早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

聚合物/碳纳米管纳米纤维材料及其制备方法和应用制作方法

  • 专利名称
    聚合物/碳纳米管纳米纤维材料及其制备方法和应用制作方法
  • 发明者
    汪成, 王丙利, 闫鹏飞
  • 公开日
    2010年6月30日
  • 申请日期
    2008年12月26日
  • 优先权日
    2008年12月26日
  • 申请人
    黑龙江大学
  • 文档编号
    D01D5/00GK101760806SQ200810209798
  • 关键字
  • 权利要求
    一种聚合物/碳纳米管纳米纤维材料,其组成包括壳层、核层,其特征是异质结纤维材料的平均直径为200-700nm,所述的壳层由p型导电聚合物聚对苯乙炔为主要材质,厚度为30-200nm,所述的核层由n型导电聚合物苝聚酰亚胺为主要材质,直径为100-400nm,纤维长度为20μm-10cm,所述的壳层和所述的核层结构中掺杂改性的单壁或多壁碳纳米管,所述的碳纳米管重量含量为2-36%,壳层与核层的重量比为1∶3-3∶12. 根据权利要求1所述的聚合物/碳纳米管纳米纤维材料,其特征是所述的P型导 电聚合物聚对苯乙炔分子量在20000-100000,所述的n型导电聚合物茈聚酰亚胺分子量在 10000-500003. 根据权利要求1或2所述的聚合物/碳纳米管纳米纤维材料,其特征是所述的改性的单壁或多壁碳纳米管是将单壁或多壁碳纳米管浸泡在酸液中,酸化时间为3-8小时,所述的酸液中浓硫酸与浓硝酸的体积比为i l-3 i4. 根据权利要求1或2所述的聚合物/碳纳米管纳米纤维材料,其特征是所述的聚对苯乙炔/碳纳米管为壳层,二者的重量比为3 i-io i,所述的茈聚酰亚胺为核层,所 述的壳层与所述的核层结构的比率通过微量注射器控制在i 3-3i;所述的聚对苯乙炔为壳层,所述的茈聚酰亚胺/碳纳米管为核层,二者的重量比为 5 i-io i ;所述的壳层与所述的核层结构的比率通过微量注射器控制在i 3-2 i5. 根据权利要求3所述的聚合物/碳纳米管纳米纤维材料,其特征是所述的聚对苯 乙炔/碳纳米管为壳层,二者的重量比为3 i-io i,所述的茈聚酰亚胺为核层,所述的 壳层与所述的核层结构的比率通过微量注射器控制在i 3-3i;所述的聚对苯乙炔为壳层,所述的茈聚酰亚胺/碳纳米管为核层,二者的重量比为 5 i-io i;所述的壳层与所述的核层结构的比率通过微量注射器控制在i 3-2 i6. 根据权利要求i或2或5所述的聚合物/碳纳米管纳米纤维材料的制备方法,其特征是采用高压静电纺丝法,在室温条件下,纺丝电压为15-25kV,发射电极和接收电极之 间的距离为10-50cm7. 根据权利要求3所述的聚合物/碳纳米管纳米纤维材料的制备方法,其特征是采 用高压静电纺丝法,在室温条件下,纺丝电压为15-25kV,发射电极和接收电极之间的距离 为10-50cm8. 根据权利要求4所述的聚合物/碳纳米管纳米纤维材料的制备方法,其特征是采 用高压静电纺丝法,在室温条件下,纺丝电压为15-25kV,发射电极和接收电极之间的距离 为10-50cm9. 一种聚合物/碳纳米管纳米纤维材料应用于光致发光、电致发光以及光电转换
  • 技术领域
    本发明涉及一种聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料及其制备方法和应用
  • 背景技术
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:聚合物/碳纳米管纳米纤维材料及其制备方法和应用的制作方法二十世纪九十年代,科学家通过本体异质结结构使聚合物光电子器件的能量转换 效率有了突破性的提高。他们用C6。衍生物掺杂改性的聚对苯乙炔所构成的电子给_受体 本体异质结,通过控制材料的相分离形态,形成互穿网络结构来扩大电子给_受体的接触 面积,有效地减小激子的扩散距离,使更多激子可以到达界面进行电荷分离。随后,通过聚 环氧乙烯基噻吩掺杂磺化聚苯乙烯等对阳极修饰,增加激子阻挡层,溶剂的选择和淬火温 度的调节等多种方法,不断改善器件的结构和性能。最近,Lee K.等人报道了采用具有不 同吸收特性的叠层结构,使聚合物本体异质结太阳能器件的能量转换效率提高到了6%。在 材料方面,以聚噻吩衍生物(P3HT)和MEH-PPV为代表的共轭聚合物作为有机聚合物本体异 质结太阳能电池的P型材料;n型材料除了用得较多的C6。衍生物外,人们对n型聚合物和n 型无机半导体材料也进行了大量研究。例如Kietzke T.等人用改性聚对苯乙炔(MEH-PPV 和CN-PPV)构成异质结,光电转化效率为1.7% ;Huynh W. U.等人用改性聚噻吩和硒化镉 (CdSe)纳米棒构成异质结,光电转化效率为1.7% ;最近,Gur I.等人用P3HT和超支化的 CdSe纳米晶构成异质结,光电转化效率得到了进一步提高。 国内的研究人员在聚合物太阳能电池方面也进行了卓有成效的研究工作,中科院 有机固体实验室以朱道本院士、李玉良、白凤莲等为主的课题组,在共轭聚合物一富勒烯、 碳纳米管复合等光伏材料的制备和器件表征方面处于领先地位;华南理工大学曹铺院士课 题组在聚对苯乙炔(PPV)和聚芴改性、聚吡咯等功能材料制备以及光伏器件优化、光伏机 理研究方面处于领先地位,目前单波长能量转换效率已超过5%。 在太阳能电池的性能研究过程中,人们发现制约能量转化效率的因素之一是低的 短路电流密度Jsc。它与材料的有效吸收光子、激子分离和载流子输运到相应电极的能力有关。
本发明的目的是提供一种利于载流子的输运的对苯乙炔/碳纳米管互穿网络本 体异质结纳米纤维材料及其制备方法和应用。 上述的目的通过以下的技术方案实现 聚合物/碳纳米管纳米纤维材料,其组成包括壳层、核层,异质结纤维材料的 平均直径为200-700nm,所述的壳层由p型导电聚合物聚对苯乙炔为主要材质,厚度为 30-200nm,所述的核层由n型导电聚合物茈聚酰亚胺为主要材质,直径为100-400咖,纤维 长度为20 m-10cm,所述的壳层和所述的核层结构中掺杂改性的单壁或多壁碳纳米管,所 述的碳纳米管重量含量为2-36%,壳层与核层的重量比为1 : 3-3 : 1。3 所述的聚合物/碳纳米管纳米纤维材料,所述的p型导电聚合物聚对苯乙炔分子 量在20000-100000,所述的n型导电聚合物菲聚酰亚胺分子量在10000-50000。 所述的聚合物/碳纳米管纳米纤维材料,所述的改性的单壁或多壁碳纳米管是将 单壁或多壁碳纳米管浸泡在酸液中,酸化时间为3-8小时,所述的酸液中浓硫酸与浓硝酸的体积比为1:1-3:1。 所述的聚合物/碳纳米管纳米纤维材料,所述的聚对苯乙炔/碳纳米管为壳层,二
者的重量比为3 : i-io : i,所述的茈聚酰亚胺为核层,所述的壳层与所述的核层结构的比 率通过微量注射器控制在l:3-3:i; 所述的聚对苯乙炔为壳层,所述的茈聚酰亚胺/碳纳米管为核层,二者的重 量比为5 : i-io : i ;所述的壳层与所述的核层结构的比率通过微量注射器控制在 i : 3_2 : i。 所述的聚合物/碳纳米管纳米纤维材料的制备方法,采用高压静电纺丝法,在室
温条件下,纺丝电压为15-25kV,发射电极和接收电极之间的距离为10-50cm。
聚合物/碳纳米管纳米纤维材料应用于光致发光、电致发光以及光电转换。
这个技术方案有以下有益效果 1.本发明提出了以p型聚合物、n型聚合物、碳纳米管为主要成分制备壳_核结构 的互穿网络并构成pn结,即在半导体聚合物纳米纤维中填充或自组装改性的碳纳米管有 序阵列。这种结构有两方面突出的特点(I)通过控制纤维的形态与尺寸可以方便地调整 活性层的有效光照比表面积,这有利于提高光电转换的空间;(II)碳纳米管在其中的作用 是形成内部导体,这有助于载流子的输运,特别是P型聚对苯乙炔/碳纳米管壳_核结构的 互穿网络复合纳米纤维,将对空穴的输运十分有利。因此,新型的复合纳米材料有望显著改 善聚合物半导体材料在光电转换方面的性能,从而加快聚合物半导体光电转换等能源转化 技术的实用化进程,同时为进一步提高半导体膜功能材料在光电转换和发光等方面的性能 提供了新的思路和方法。 2.本发明利用高压静电纺丝技术制备了一种聚对苯乙炔/碳纳米管互穿网络本 体异质结纳米纤维材料,它的平均直径为200-700nm ;壳层由p型导电聚合物为主要材质, 厚度为30-200nm ;核层由n型导电聚合物为主要材质,直径为100-400nm ;互穿网络本体异 质结纳米纤维长度为20 ii m-10cm ;壳核结构中掺杂改性的单壁或多壁碳纳米管。碳纳米管 重量含量为2-36%,壳/核层的重量比为1 : 3-3 : 1。碳纳米管的掺杂使导电聚合物的 比表面积明显增大,同时改善了其光电转换特性。本发明的特色在于碳纳米管、P型和n型 导电聚合物之间形成纳米级接触,降低了活性层的厚度,这在很大程度上解决了激子扩散 长度的问题,提高了载流子的输运,特别是空穴的输运。本发明中碳纳米管、P型和n型导 电聚合物之间形成互穿网络结构提高了光的吸收,改善了材料对光的捕获能力,同时使之 与生成载流子的位置更近,这有利于载流子的输运。 3.本发明材料为载体能将纳米器件排布起来,同时互穿网络结构扩大了电子
给-受体的接触面积,有效地减小了激子的扩散距离,使更多的激子可以到达界面进行电
荷分离,这种材料的使用有望改进本体异质太阳电池的光电转换效率。 4.聚合物材料表现出弱的激子扩散长度和低的载流子移动性,这严重地限制了
Jsc。本发明在本体异质结结构中,由于形成了纳米级的相分离,这在很大程度上解决了激子扩散长度短的问题。然而对于载流子的输运,特别是空穴的输运,仍然是一个限制因素。 克服这个问题的简单途径是降低活性层的厚度,但这样就降低了光的吸收,导致器件对光 的捕获能力降低。解决这一问题的另一途径是在活性层中形成互穿网络导体,使之与生成 载流子的位置更近,这有利于载流子的输运。


附图1是单根聚对苯乙炔/碳纳米管/茈聚酰亚胺复合套管式纳米纤维示意图;
附图2是单根聚对苯乙炔/茈聚酰亚胺/碳纳米管复合套管式纳米纤维示意图;
附图3是聚对苯乙炔/碳纳米管/茈聚酰亚胺复合纳米纤维扫描电镜照片及示意 图; 本发明的

实施例1 : 本实施方式中制备聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料(见 附图1)所用的纺丝溶液由聚对苯乙炔先驱聚合物2、碳纳米管1和茈聚酰亚胺3按下述比 例配制先驱聚合物溶液(4% )30mL,单壁碳纳米管100mg,茈聚酰亚胺溶液(5% )20mL。
以聚对苯乙炔/碳纳米管为壳层,茈聚酰亚胺为核层来制备复合纳米纤维材料, 其制备步骤如下 a.碳纳米管的改性量取浓硝酸100mL,在搅拌条件下,将其加入到200mL浓硫酸 溶液中,室温搅拌30分钟后,将10g碳纳米管(单壁或多壁)加入到上述混合溶液中进行 酸化处理,酸化时间为2-8小时。之后,用去离子水反复洗涤上述溶液并抽滤,得到改性后 的单(多)壁碳纳米管。 b.互穿网络本体异质结纳米纤维的制备将100mg碳纳米管加入到30mL先驱聚 合物(4%)溶液中,剧烈搅拌8小时后,将溶液转移到50mL注射器中。取20mL茈聚酰亚胺 (5%)溶液置于另一50mL注射器中。将两支注射器分别固定在微量注射泵上,注射器针头 用套管式针头,将铂丝电极连接到注射器喷头处,并接产生正高压的静电发生器。利用流动 注射泵分别控制壳层和核层溶液的流速,实现对壳层和核层含量的控制,流速为20-120mL/ H ;喷头到接收电极的距离为15-50cm ;纺丝电压为10-25KV ;环境温度为25°C ;空气相对湿 度为30-60% ;接收电极接地或者接产生负高压的静电发生器,负极材料主要为铝箔、石英 片、铜网、ITO玻璃等。先开启流动注射泵,待喷头处有液体流出时,开启高压静电发生器, 调节电压到适当值,进行静电纺丝。得到的互穿网络本体异质结纳米纤维在高纯氮气保护 下,缓慢升温至80°C ,恒温2-3H,继续升温至220°C ,恒温0. 5H后,缓慢冷却至室温,即得到
本发明的聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料。
实施例2 : 制备聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料所用的纺丝溶 液由下述物质组成先驱聚合物溶液(4% )30mL,单壁碳纳米管50mg,茈聚酰亚胺溶液 (5% )20mL。以聚对苯乙炔/碳纳米管为壳层,茈聚酰亚胺为核层来制备复合纳米纤维材 料。其制备方法与具体实施例l相同。
实施例3 : 本实施例中制备聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料所用
5的纺丝溶液由下述物质组成先驱聚合物溶液(4% )30mL,单壁碳纳米管10mg,茈聚酰亚胺 溶液(5%)20mL。以聚对苯乙炔/碳纳米管为壳层,茈聚酰亚胺为核层来制备复合纳米纤 维材料。其制备方法与具体实施例l相同。
实施例4 : 本实施方式中制备聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料 (见附图2)所用的纺丝溶液由下述物质组成先驱聚合物溶液(4% )30mL,单壁碳纳米管 60mg,茈聚酰亚胺溶液(5%)20mL。以聚对苯乙炔2为壳层,茈聚酰亚胺3/碳纳米管1为
核层来制备复合纳米纤维材料。其制备方法与
一相同。
实施例5 : 本实施方式中制备聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料所 用的纺丝溶液由下述物质组成先驱聚合物溶液(4% )30mL,单壁碳纳米管30mg,茈聚酰亚 胺溶液(5%)20mL。以聚对苯乙炔为壳层,茈聚酰亚胺/碳纳米管为核层来制备复合纳米 纤维材料。其制备方法与具体实施例l相同。
实施例6 : 本实施方式中制备聚对苯乙炔/碳纳米管互穿网络本体异质结纳米纤维材料所 用的纺丝溶液由下述物质组成先驱聚合物溶液(4% )30mL,单壁碳纳米管10mg,茈聚酰亚 胺溶液(5%)20mL。以聚对苯乙炔为壳层,茈聚酰亚胺/碳纳米管为核层来制备复合纳米 纤维材料。其制备方法与具体实施例l相同。
实施例7 : 本实施方式中制备聚对苯乙炔互穿网络本体异质结纳米纤维材料(见附图3)所 用的纺丝溶液由下述物质组成先驱聚合物溶液(4% )30mL,茈聚酰亚胺溶液(5% )20mL。 以聚对苯乙炔为壳层2,茈聚酰亚胺为核层3来制备复合纳米纤维材料。其制备方法与具体 实施例1相同。


聚合物/碳纳米管纳米纤维材料及其制备方法和应用,聚合物材料表现弱的激子扩散长度和低载流子移动性,严重地限制了短路电流密度;对于载流子的空穴的输运,仍是限制。克服这个问题的途径是降低活性层的厚度,导致器件对光的捕获能力降低。本发明组成包括壳层、核层,异质结纤维材料的平均直径为200-700nm,壳层由p型导电聚合物聚对苯乙炔为主要材质,厚度为30-200nm,核层由n型导电聚合物苝聚酰亚胺为主要材质,直径为100-400nm,纤维长度为20μm-10cm,壳层和核层结构中掺杂改性的单壁或多壁碳纳米管,碳纳米管重量含量为2-36%,壳层与核层的重量比为1∶3-3∶1。本发明用于光致发光、电致发光以及光电转换的材料。



查看更多专利详情

下载专利文献

下载专利