早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

一种复合纳米ZnO压敏陶瓷粉体的制备方法

  • 专利名称
    一种复合纳米ZnO压敏陶瓷粉体的制备方法
  • 发明者
    王茂华, 马小玉, 江雯
  • 公开日
    2014年7月30日
  • 申请日期
    2014年4月29日
  • 优先权日
    2014年4月29日
  • 申请人
    常州大学
  • 文档编号
    C04B35/626GK103951416SQ201410176563
  • 关键字
  • 权利要求
    1.一种复合纳米ZnO压敏陶瓷粉体的制备方法,其特征在于按照步骤进行 以可溶性锌盐,铋盐,钴盐,锰盐为原料,分别配置锌盐水溶液、铋盐水溶液、钴盐水溶液、锰盐水溶液,以摩尔百分含量计算,按照95%的ZnO, 3%的Bi2O3, 1%的CoO, 1%的MnO的配比混合,搅拌均匀; (2)将氨水缓慢加入步骤(1)得到的混合溶液中,调节pH在8~8.5,得到混合溶液,继续搅拌至混合均匀; (3)把步骤(2)所得的沉淀抽滤,并用去离子水和乙醇充分洗涤去除杂质,将得到的前驱体放在水或者乙醇介质中回流2~8h,回流温度控制在7(T80°C ; (4)最后将回流得到的粉体抽滤,并用去离子水和乙醇充分洗涤去除杂质,最后在真空干燥箱中干燥,取出后在玛瑙研钵中研磨得到纳米复合ZnO粉体2.如权利要求1所述的一种复合纳米ZnO压敏陶瓷粉体的制备方法,其特征在于所述锌盐指Zn (NO3) 2.6H20 ;所述铋盐指Bi (NO3) 2.5H20,所述钴盐指Co (NO3) 2.6H20,所述锰盐指MnCl2.4H20为原料,分别配置Zn (NO3) 2水溶液、Bi (NO3) 2水溶液、Co (NO3) 2水溶液和MnCl2水溶液3.如权利要求2所述的一种复合纳米ZnO压敏陶瓷粉体的制备方法,其特征在于所述步骤I中配置的溶液浓度为均为0.lmol/Lo4.如权利要求1所述的一种复合纳米ZnO压敏陶瓷粉体的制备方法,其特征在于所述的步骤2中的氨 水浓度为10wt%5.如权利要求1所述的一种复合纳米ZnO压敏陶瓷粉体的制备方法,其特征在于所述步骤4中的干燥指于70°C下干燥4h6.使用如权利要求1所述制备方法制备的复合纳米ZnO压敏陶瓷粉体制备的ZnO压敏陶瓷,其特征在于所述ZnO压敏陶瓷的收缩率5%~?3%,压敏电压VlmA为50(T600V/mm,漏电流JLeak为2~8 μ A (0.78VlmA),非线性系数α为27.7~34.57.如权利要求6所述的ZnO压敏陶瓷的制备方法,其特征在于按照如下步骤进行 (1)在纳米复合ZnO粉体中加入粘接剂,研磨、过筛造粒,压制成片状; (2)将步骤(1)制得的片状素坯烧结后得到ZnO压敏陶瓷8.如权利要求7所述的ZnO压敏陶瓷的制备方法,其特征在于所述粘接剂为质量分数为5%的聚乙烯醇,所述过筛造粒指用200目的筛子过筛造粒;所述压制成片状指在3(T80MPa下压制成片状9.如权利要求7所述的ZnO压敏陶瓷的制备方法,其特征在于所述烧结指在1050-1200?下烧结,于空气气氛下保温2h,升降温速率5°C /min
  • 技术领域
    [0001]本发明涉及ZnO压敏陶瓷材料,特指一种复合纳米ZnO压敏陶瓷粉体的制备方法,属于电子陶瓷制备及应用
  • 专利摘要
    本发明涉及ZnO压敏陶瓷材料,特指一种复合纳米ZnO压敏陶瓷粉体的制备方法。以可溶性锌盐,铋盐,钴盐,锰盐为原料,分别配置成水溶液,以摩尔百分含量计算,按照95%的ZnO,3%的Bi2O3,1%的CoO,1%的MnO的配比混合,搅拌均匀;将氨水缓慢加入步骤(1)得到的混合溶液中,调节pH在8~8.5,得到混合溶液,继续搅拌至混合均匀;把步骤(2)所得的沉淀抽滤,并用去离子水和乙醇充分洗涤去除杂质,将得到的前驱体放在水或者乙醇介质中回流2~8h,回流温度控制在70~80℃;最后将回流得到的粉体抽滤,并用去离子水和乙醇充分洗涤去除杂质,最后在真空干燥箱中干燥,研磨后得到纳米复合ZnO粉体。
  • 发明内容
  • 专利说明
    一种复合纳米ZnO压敏陶瓷粉体的制备方法
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
一种复合纳米ZnO压敏陶瓷粉体的制备方法【技术领域】。[0002]ZnO压敏陶瓷材料是以ZnO粉料为主体,添加少量多种金属氧化物改性的多功能复合陶瓷材料,具有表面效应,小尺寸效应,量子尺寸效应等纳米效应,以及优异的非线性伏安特性和巨大的脉冲能量吸收能力,纳米ZnO被广泛地应用于电力系统和电子线路中。[0003]ZnO压敏陶瓷主要采用传统的高温固相烧结方法制备,此法一般是按一定比例将ZnO、Bi2O3和CoO等金属氧化物混合球磨,压制成型,再进行高温固相反应,最后经打磨,抛光等工序制得产品。但该法的问题在于球磨得到的粉体粒度大、团聚严重和形貌不均匀难以制备高质量的纳米粉体材料;现代材料科学要求在发展新材料的同时,探索一种方法工艺简单,成本低廉,低能耗,环境友好的合成路线来合成纳米陶瓷粉体具有极其重要的科学和现实意义,所以探索新的制备工艺已成为研究和开发的热点。[0004]目前制备ZnO压敏陶瓷材料除了固相法以外,主要采用液相法,液相法主要包括沉淀法,水热法,溶胶凝胶法,微乳液法等;在这些方法中沉淀法应用最为普遍,因为沉淀法具有便于操作,工艺简单,适用于大型工业生产等优点;但采用沉淀法合成纳米ZnO粉体时通常需要将得到的前驱体转化为ZnO,该过程一般采用高温烧结来获得稳定的纳米ZnO粉体,该方法得到的纳米 ZnO粉体分散性较差,产物产率较低,颗粒大小不均,而且该反应过程需要较高的温度,能耗较高,增加了生产成本。[0005]因此,目前研究的重点是探讨一种新的方法来取代传统的通过高温烧结来获得稳定的纳米复合ZnO粉体;本发明主要采用加热回流法直接合成纳米复合ZnO粉体,从而制得高性能的ZnO压敏陶瓷材料。该方法在实施过程中能耗较低,产物产率较高、物相分散均匀,可以避免因高温烧结而产生的团聚问题。
[0006]本发明的目的在于提供一种ZnO压敏陶瓷材料的制备方法,克服传统固相法以氧化物为原料制备纳米复合ZnO粉体存在的缺点,和解决当前ZnO压敏陶瓷材料制备大多需通过粉体烧结生成ZnO粉体,工艺复杂,生产成本高,且得到的氧化锌形貌不均匀,颗粒大小不一的问题,根据加热回流法来改善ZnO粉体微观结构,提高ZnO压敏陶瓷材料的电性倉泛。
[0007]本发明所采用的方法涉及到许多因素,如反应物的配比、反应温度、反应时间以及PH值等。它包括以下步骤:
1、纳米复合ZnO粉体的制备
(I)以分析纯的 Zn (NO3) 2.6H20,Bi (NO3) 2.5H20,Co (NO3) 2.6H20,MnCl2.4H20 为原料,分别配置Zn (NO3) 2、Bi (NO3) 2、Co (NO3)2^MnCl2水溶液,以摩尔百分含量计算,按照95%的ZnO, 3%的Bi2O3, 1%的CoO, 1%的MnO的配比混合,搅拌均匀。
[0008](2)将氨水缓慢加入步骤(1)得到的混合溶液中,调节pH值为8~8.5,得到混合溶液,继续搅拌至混合均匀。
[0009](3)把步骤(2)所得的沉淀抽滤,并用去离子水和乙醇充分洗涤去除杂质,将得到的前驱体放在水或者乙醇介质中回流2~8h,回流温度控制在7(T80°C。
[0010](4)最后将回流得到的粉体抽滤,并用去离子水和乙醇充分洗涤去除杂质,最后在真空干燥箱中干燥,取出后在玛瑙研钵中研磨得到纳米复合ZnO粉体。.所述步骤I中配置的Zn (NO3) 2、Bi (NO3)2Xo(NO3)JP MnCl2水溶液浓度均为0.lmol/L。[0011 ] 所述步骤2中的氨水浓度为10wt%。
[0012]所述步骤4中的干燥指于70°C下干燥4h。
[0013]2、ZnO压敏陶瓷的制备
(I)在纳米复合ZnO粉体中加入质量分数为5%的聚乙烯醇(PVA),在研钵中研磨,用200目的筛子过筛造粒,在3(T80MPa下压制成片状。
[0014](2)将步骤(1)制得的片状素坯在1050-1200?下烧结,于空气气氛下保温2h,升降温速率5°C /min,得到ZnO压敏陶瓷。
[0015](3)将步骤(2)制得的ZnO压敏陶瓷表面打磨,抛光,被银,制作电极。
[0016]本发明提供的材料配方和制备方法所制得的纳米复合ZnO粉体为棕色,ZnO压敏陶瓷片为黑灰色固体,收缩率5%~13%,压敏电压V1dia为50(T600V/mm,漏电流Ieak为2~8 μ A(0.78VlmA),非线性系数α为27.7^34.5 ;由于电位梯度相对较高,可以用于制造高压、超高压电力系统的过电压保护产品等。
[0017]本发明采用上述技术方案的优点是:
①液相回流可以直接得到纳米复合ZnO粉体,不需要高温灼烧处理,且产物产率高、纯度高,分散性良好、物相均匀,能耗较低;
采用本发明制备的ZnO压敏陶瓷,电位梯度较高,非线性系数较大,漏电流小,符合高压、超高压电力系统的过电压保护产品的要求。



[0018]图1是本发明所制得纳米复合ZnO粉体的XRD图,图中I的特征峰和ZnO粉体衍射图的特征峰相符合,说明该回流法可以获得稳定的ZnO粉体。
[0019]图2是本发明所制得纳米复合ZnO粉体的TEM图,从图中可以看出纳米ZnO粉体颗粒大小均一,分散性较好。
[0020]图3是本发明所制得的ZnO压敏陶瓷的SEM图,图中的ZnO压敏陶瓷材料致密性良好,形貌均一,颗粒大小为7、μ m。

[0021]下面结合附图和实施例,对本发明做进一步的描述,但绝不限制本发明的范围: 实施例1
1、纳米复合ZnO粉体的制备
(I)将11.4349g的硝酸锌配置成0.lmol/L的溶液;将硝酸铋、硝酸钴、氯化锰分别溶解成水溶液,在搅拌状态下加到0.lmol/L硝酸锌溶液中,各种物质的加入量符合摩尔比为95:3:1:1,用氨水调节溶液pH至8,继续搅拌2h。
[0022] (2)所得的沉淀抽滤,并用去离子水和乙醇充分洗涤去除杂质,得到的前驱体放在乙醇介质中回流2h,回流温度控制在80°C。
[0023](3)最后将回流得到的粉体抽滤,并用去离子水和乙醇充分洗涤去除杂质,最后在真空干燥箱中于70°C下干燥4h,取出后在玛瑙研钵中研磨得到纳米复合ZnO粉体。
[0024]2、ZnO压敏陶瓷的制备
(I)在纳米复合ZnO粉体中加入质量分数为5%的聚乙烯醇(PVA),在研钵中研磨,用200目的筛子过筛造粒,在50MPa下压制成片。
[0025](2)将步骤(1)制得的片状素坯在1100°C下烧结,于空气气氛下保温2h,升降温速率5°C /min,得到ZnO压敏陶瓷。
[0026]实施例2
本实施例中,制备纳米复合ZnO粉体时,各组分重量与实施例1 一样,用氨水调节溶液PH值为8.5,继续搅拌a ;所得的沉淀抽滤,洗漆,在乙醇介质中78°C回流3h ;上述材料采用与实施例1相同的工艺步骤,制备成ZnO压敏陶瓷,其不同之处在于陶瓷烧结温度为1150。。。
[0027]实施例3
本实施例中,制备纳米复合ZnO粉体时,各组份重量与实施例1 一样,用氨水调节溶液pH值为8,继续搅拌a ;所得的沉淀抽滤,洗漆,在乙醇介质中75°C回流回流4h ;上述材料采用与实施例1相同的工艺步骤,制备成ZnO压敏陶瓷,其不同之处在于陶瓷烧结温度为1050 O。
[0028]实施例4
本实施例中,制备纳米复合ZnO粉体时,各组份重量与实施例1 一样,用氨水调节溶液pH值为8,继续搅拌a ;所得的沉淀抽滤,洗漆,在乙醇介质中72°C回流回流6h ;上述材料采用与实施例1相同的工艺步骤,制备成ZnO压敏陶瓷,其不同之处在于陶瓷烧结温度为1200。。。
[0029]实施例5
本实施例中,制备纳米复合ZnO粉体时,各组份重量与实施例1 一样,用氨水调节溶液PH值为8.5,继续搅拌2h ;所得的沉淀抽滤,洗涤,在乙醇介质中70°C回流8h ;上述材料采用与实施例1相同的工艺步骤,制备成ZnO压敏陶瓷,其不同之处在于陶瓷烧结温度为1150。。。

查看更多专利详情