早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法

  • 专利名称
    一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法
  • 发明者
    汪宏, 郭靖, 张高群, 周迪
  • 公开日
    2014年9月10日
  • 申请日期
    2014年6月5日
  • 优先权日
    2014年6月5日
  • 申请人
    西安交通大学
  • 文档编号
    C04B35/64GK104030682SQ201410247186
  • 关键字
  • 权利要求
    1.一种无玻璃低温烧结温度稳定型微波介质陶瓷材料,其特征在于,其化学式为A1-SxBi2xMoO4,其中 A 为 Ca2+、Sr2+、Ba2+或 Pb2+ ;0.005 ^ x ^ 0.32.根据权利要求1所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料,其特征在于其介电常数为8~45、QXf值为1880GHz~103750GHz、谐振频率温度系数为-91ppm/°C ~+25ppm/°C3.一种无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于,包括以下步骤 1)按化学式AnxBi2xMoO4中各元素的配比称取原料Bi2O3和MoO3以及CaC03、SrCO3> BaCO3> PbO 中的一种,其中化学式 A1^3xBi2xMoO4 中 A 为 Ca2+、Sr2+、Ba2+ 或 Pb2+,0.005 ≤ X ≤ 0.3 ; 2)将称取的原料混合后放入球磨罐中,加入球磨溶剂,湿法球磨至原料混合均匀,然后将球磨后的原料取出烘干,压制成块体; 3)将压制的块体在450~600°C预烧,并保温4~6小时,得到样品烧结块; 4)将样品烧结块粉碎后球磨均匀,然后烘干、造粒,得到瓷料粉末; 5)将瓷料粉末压制成型,在550~900°C下烧结2~6小时成瓷,得到无玻璃低温烧结温度稳定型微波介质陶瓷材料4.根据权利要求3所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于所述的步骤2)中的球磨罐为尼龙罐,球磨溶剂为无水乙醇5.根据权利要求3或4所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于所述的步骤2)中的球磨时间为3~12小时6.根据权利要求3或4所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于所述的步骤2)中的烘干温度为100~120°C7.根据权利要求3所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于所述的步骤4)中采用湿法球磨,球磨罐为尼龙罐,球磨溶剂为无水乙醇8.根据权利要求3或7所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于所述的步骤4)中的球磨时间为4~12小时9.根据权利要求3或7所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于所述的步骤4)中的烘干温度为100~120°C10.根据权利要求3所述的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,其特征在于所述的步骤4)中造粒得到的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末
  • 技术领域
    [0001]本发明属于电子陶瓷
  • 专利摘要
    本发明公开了一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法。该陶瓷材料的化学式为A1-3xBi2xMoO4,其中A为Ca2+,Sr2+,Ba2+或者Pb2+;0.005≤x≤0.3。其制备方法的以具有白钨矿结构的ABO4型钼基介质材料为基础,利用价态补偿的方法,通过三价铋离子取代二价离子的方式形成A位缺陷型固溶体,制备方法简单,烧结温度低。该陶瓷材料是一种不需要添加玻璃助烧剂就可以在低温下烧结的、温度稳定(谐振频率温度系数小)的可应用于LTCC技术的高性能微波介质陶瓷材料,其介电常数为8~45,最高品质因子为Q×f值=103750GHz,最小|TCF|值可以达到1.2ppm/℃。
  • 发明内容
  • 专利说明
    一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法【技术领域】,涉及一种微波介质陶瓷材料及其制备方法,尤其是一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法。[0002]近年来信息技术飞速发展,通讯类电子产品、军事电子整机等在小型化、轻型化、高可靠性、高集成度及低成本方面的需求,对以微波介质陶瓷为基础的微波元器件提出了更高的要求。以低温共烧陶瓷(low-temperature co-fired ceramic, LTCC)技术为基础的多层结构设计可有效减小器件体积,是实现这些需求的重要技术手段。 [0003]LTCC技术是一种令人瞩目的多学科交叉的整合组件技术,涉及电路设计、材料科学、微波技术等广泛领域。它最初是20世纪80年代由休斯公司开发的新型材料技术,利用低温烧结陶瓷材料,根据设计的图案结构,将基板、电子元件、电极材料等一次性烧成,大大提高了生产效率。与其他组件整合技术相比,LTCC技术具有许多优点:LTCC技术的烧结温度一般低于950°C,可以采用金、银、铜等高电导率金属作为导电介质,降低了工艺难度并提高了信号传输速度;LTCC材料的介电常数可以在很大的范围内变动,使电路设计更加灵活性;温度特性更加优秀,如具有较小的热膨胀系数、较小的谐振频率温度系数,可适应大电流及耐高温特性要求;可靠性更高,可用于恶劣环境;可以得到更细的线宽和线间距,提高了集成度。[0004]微波介质陶瓷材料作为LTCC技术的关键材料之一,应该具有低损耗(高QXf值)、近零的谐振频率温度系数(温度稳定:TCF~O)、低烧结温度(<960°C )、能与Ag或Cu电极匹配共烧的特性。但是,绝大部分的微波介质陶瓷材料不具有低烧结温度及近零的谐振频率温度系数,不适合LTCC技术的要求,因此开发和研究低温烧结温度稳定型微波介质陶瓷材料体系就变得非常的有意义了。[0005]综上所述,微波技术的飞速发展推动了微波元器件向小型化、集成化的发展。LTCC技术以其优异的电学、热学、机械特性成为当前电子元件集成化、模块化的首选方式,广泛用于宇航工业、军事、无线通信、全球定位系统、无线局域网、汽车等领域。因此,化学组成和制备工艺简单、烧结温度低、具有温度稳定性、微波介电性能优异且能与铜或银电极共烧的新型微波介质陶瓷材料具有广阔的应用前景。
[0006]本发明的目的在于克服上述现有技术的缺点,提供一种无玻璃低温烧结温度稳定型微波介质陶瓷材料及其制备方法,该陶瓷材料是一种不需要添加玻璃助烧剂就可以在低温下烧结的、谐振频率温度系数(TCF)接近于零的、可应用于LTCC技术的高性能微波介质陶瓷材料。[0007]本发明的目的是通过以下技术方案来解决的:[0008]—种无玻璃低温烧结温度稳定型微波介质陶瓷材料,其化学式为=AnxBi2xMoO4,其中 A 为 Ca2+、Sr2+、Ba2+ 或 Pb2+ ;0.005 ≤ x ≤ 0.3。
[0009]其介电常数为8~45、QXf值为1880GHz~103750GHz、谐振频率温度系数为-91ppm/°C ~+25ppm/°C。
[0010]该无玻璃低温烧结温度稳定型微波介质陶瓷材料是基于白钨矿的A位缺陷型固溶体。
[0011]一种无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,包括以下步骤:
[0012]I)按化学式Ah3xBi2xMoO4中各元素的配比称取原料Bi2O3和MoO3以及CaC03、SrCO3> BaCO3> PbO 中的一种,其中化学式 A1^3xBi2xMoO4 中 A 为 Ca2+、Sr2+、Ba2+ 或 Pb2+,0.005 ≤ X ≤ 0.3 ;
[0013]2)将称取的原料混合后放入球磨罐中,加入球磨溶剂,湿法球磨至原料混合均匀,然后将球磨后的原料取出烘干,压制成块体;
[0014]3)将压制的块体在450~600°C预烧,并保温4~6小时,得到样品烧结块;
[0015]4)将样品烧结块粉碎后球磨均匀,然后烘干、造粒,得到瓷料粉末;
[0016]5)将瓷料粉末压制成型,在550~900°C下烧结2~6小时成瓷,得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0017]所述的步骤2)中的球磨罐为尼龙罐,球磨溶剂为无水乙醇。
[0018]所述的步骤2)中的球磨时间为3~12小时。
[0019]所述的步骤2)中的烘干温度为100~120°C。
[0020]所述的步骤4)中采用湿法球磨,球磨罐为尼龙罐,球磨溶剂为无水乙醇。
[0021]所述的步骤4)中的球磨时间为4~12小时。
[0022]所述的步骤4)中的烘干温度为100~120°C。
[0023]所述的步骤4)中造粒得到的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末。
[0024]相对于现有技术,本发明具有以下有益效果:
[0025]本发明提供的无玻璃低温烧结温度稳定型微波介质陶瓷材料,其化学式为:A1^xBi2xMoO4,其中 A 为 Ca2+、Sr2+、Ba2+ 或 Pb2+ ;0.005 ^ x ^ 0.3。该陶瓷材料是一种不需要添加玻璃助烧剂就可以在低温下烧结的、谐振频率温度系数(TCF)接近于零的、可应用于LTCC技术的高性能微波介质陶瓷材料,该陶瓷材料能够适用于LTCC技术的需要,扩大其应用范围。
[0026]本发明提供的无玻璃低温烧结温度稳定型微波介质陶瓷材料的制备方法,采用了最简单有效的固相反应烧结的方法来制备目标产物。首先是选取合适比例的配方,选取合适的初始氧化物,通过一次球磨使得氧化物混合均匀,通过预烧结过程使得氧化物进行初步的反应,再通过二次球磨细化反应物的颗粒尺寸,最后通过烧结得到所需要的陶瓷样品。该方法原料易得、步骤简单、操作方便、烧结温度低。
[0027]本发明制得的无玻璃低温烧结温度稳定型微波介质陶瓷材料的介电常数随成分变化在8~45之间,QXf值分布在1880GHz~103750GHz,谐振频率温度系数在-91ppm/°C~+25ppm/°C可调,最小 |TCF| 值可以达到 1.2ppm/°C。
[0028]下面对本发明的内容作进一步详细说明。
[0029]本发明的无玻璃低温烧结温度稳定型微波介质陶瓷材料以具有白钨矿结构的ABO4型钥基介质材料为基础,利用价态补偿的方法,通过三价铋离子取代二价离子的方式形成A位缺陷型固溶体,其配方表达式为=AnxBi2xMoO4,其中A为Ca2+,Sr2+,Ba2+或者Pb2+ ;
0.005 ^ X ^ 0.3ο
[0030]本发明的无玻璃低温烧结温度稳定型微波介质陶瓷材料具体制备步骤如下:
[0031]按配方通式AnBi2xMoO4 配制原料 CaC03、SrC03、BaC03、PbO、Bi203、MoO3,其中 A 为Ca2+, Sr2+, Ba2+, Pb2+ 离子中的一种,0.005 ^ x ^ 0.3 ;
[0032]将配制的原料混合后球磨3~12个小时,磨细后烘干、压块,然后经450~600°C预烧,并保温4~6小时,将预烧后的块体进行二次球磨,磨细烘干后造粒,经60目与120目筛网双层过筛,即可得到所需瓷料。将瓷料按需要压制成型,然后在550~900°C下烧结2~6小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0033]本发明从晶体化学原理和电介质物理的有关理论出发,通过离子取代和价态补偿形成A位缺陷型固溶体。可以在没有任何烧结助剂的前提下,实现低温烧结(550~900°C ),并且得到谐振频率温度系数近零、微波介电性能优异的新型功能陶瓷。这类陶瓷可以作为低温共烧陶瓷系统(LTCC)、射频多层陶瓷电容器、谐振器、滤波器、陶瓷天线、介质波导回路、多芯片组件(MCM)、蓝牙模块等介质材料使用。以下给出本发明的几个实施例:
[0034]实施例1
[0035]I)将分析纯的原料CaC03、Bi203、Mo03按配方通式A1^xBi2xMoO4配制,其中A为Ca2+,x = 0.005 ;
[0036]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨4小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0037]3)压制的块体经600°C预烧,并保温4小时,得到样品烧结块;
[0038]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0039]5)将瓷料粉末按需要压制成型(片状或柱状),在900°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0040]该陶瓷材料的性能达到如下指标:
[0041]在900°C空气中烧结成瓷,微波下的介电性能ε ^ = 9.3,QXf值=99410GHz,微波下的谐振频率温度系数TCF~-52.8ppm/°C (25~85°C )。
[0042]实施例2
[0043]I)将分析纯的原料CaC03、Bi203、Mo03按配方通式A1^xBi2xMoO4配制,其中A为Ca2+,x = 0.015 ;
[0044]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨4小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0045]3)压制的块体经600°C预烧,并保温4小时,得到样品烧结块;
[0046]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0047]5)将瓷料粉末按需要压制成型(片状或柱状),在825°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0048]该陶瓷材料的性能达到如下指标:
[0049]在825°C空气中烧结成瓷,微波下的介电性能ε^= 10.5,QXfft= 103750GHz,微波下的谐振频率温度系数TCF~-51.8ppm/°C (25~85°C )。
[0050]实施例3:
[0051]I)将分析纯的原料CaC03、Bi203、Mo03按配方通式A1^xBi2xMoO4配制,其中A为Ca2+,X = 0.15 ;
[0052]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨4小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0053]3)压制的块体经600°C预烧,并保温4小时,得到样品烧结块;
[0054]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0055]5)将瓷料粉末按需要压制成型(片状或柱状),在700°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0056]该陶瓷材料的性能达到如下指标:
[0057]在700°C空气中烧结成瓷,微波下的介电性能ε r = 21.2,QXf值=29290GHz,微波下的谐振频率温度系数TCF~-1.2ppm/°C (25~85°C )。
[0058]实施例4:
[0059]I)将分析纯的原料SrC03、Bi203、Mo03按配方通式AnBi2xMoO4配制,其中A为Sr2+,X = 0.15 ;
[0060]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨4小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0061]3)压制的块体经550°C预烧,并保温4小时,得到样品烧结块;
[0062]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0063]5)将瓷料粉末按需要压制成型(片状或柱状),在700°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0064]该陶瓷材料的性能达到如下指标:
[0065]在700°C空气中烧结成瓷,微波下的介电性能ε r = 22,QXf值=15000GHz,微波下的谐振频率温度系数TCF~-5ppm/°C (25~85°C )。
[0066]实施例5:
[0067]I)将分析纯的原料BaC03、Bi203、Mo03按配方通式A1^xBi2xMoO4配制,其中A为Ba2+,x = 0.025 ;
[0068]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨4小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0069]3)压制的块体经500°C预烧,并保温4小时,得到样品烧结块;
[0070]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0071]5)将瓷料粉末按需要压制成型(片状或柱状),在650°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0072]该陶瓷材料的性能达到如下指标:
[0073]在650°C空气中烧结成瓷,微波下的介电性能= 10.2,QXf值=55620GHz,微波下的谐振频率温度系数TCF~-32.5ppm/°C (25~85°C )。
[0074]实施例6:
[0075]I)将分析纯的原料BaC03、Bi203、Mo03按配方通式A1^xBi2xMoO4配制,其中A为Ba2+,X = 0.2 ;
[0076]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨4小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0077]3)压制的块体经500°C预烧,并保温4小时,得到样品烧结块;
[0078]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0079]5)将瓷料粉末按需要压制成型(片状或柱状),在625°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0080]该陶瓷材料的性能达到如下指标:
[0081]在625°C空气中烧结成瓷,微波下的介电性能= 23,QXfft= 7070GHz,微波下的谐振频率温度系数TCF~+9.8ppm/°C (25~85°C )。
[0082]实施例7:
[0083]1)将分析纯的原料BaC03、Bi203、Mo03按配方通式A1^xBi2xMoO4配制,其中A为Ba2+,X = 0.3 ;
[0084]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨4小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0085]3)压制的块体经500°C预烧,并保温4小时,得到样品烧结块;
[0086]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0087]5)将瓷料粉末按需要压制成型(片状或柱状),在625°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0088]该陶瓷材料的性能达到如下指标:
[0089] 在625°C空气中烧结成瓷,微波下的介电性能= 26.4,QXfft= 1880GHz,微波下的谐振频率温度系数TCF~-90.9ppm/°C (25~85°C )。
[0090]实施例8:[0091]I)将分析纯的原料Pb0、Bi203、Mo03按配方通式Ap3xBi2xMoO4配制,其中A为Pb2+,X = 0.1 ;
[0092]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨3小时,充分混合均匀,取出后在100°c下快速烘干,压制成块状;
[0093]3)压制的块体经500°C预烧,并保温4小时,得到样品烧结块;
[0094]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过4小时的二次湿法球磨,充分混合磨细后,在100°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0095]5)将瓷料粉末按需要压制成型(片状或柱状),在600°C下烧结2小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0096]该陶瓷材料的性能达到如下指标:
[0097]在600°C空气中 烧结成瓷,微波下的介电性能ε r = 40,QXf值=20000GHz,微波下的谐振频率温度系数TCF~-8ppm/°C (25~85°C )。
[0098]实施例9:
[0099]I)将分析纯的原料PbO、Bi203、MoO3按配方通式A1^xBi2xMoO4配制,其中A为Pb2+,X = 0.25 ;
[0100]2)将配制后的化学原料混合,放入尼龙罐中,加入无水乙醇,采用湿法球磨8小时,充分混合均匀,取出后在120°C下快速烘干,压制成块状;
[0101]3)压制的块体经450°C预烧,并保温6小时,得到样品烧结块;
[0102]4)将样品烧结块粉碎,放入尼龙罐中,加入无水乙醇,经过12小时的二次湿法球磨,充分混合磨细后,在120°C下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0103]5)将瓷料粉末按需要压制成型(片状或柱状),在550°C下烧结6小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0104]实施例10
[0105]I)将分析纯的原料SrC03、Bi203、Mo03按配方通式AnBi2xMoO4配制,其中A为Sr2+,X = 0.05 ;
[0106]2)将配制后的化学原料混合,放入尼龙罐中,加入酒精,采用湿法球磨12小时,充分混合均匀,取出后在110°c下快速烘干,压制成块状;
[0107]3)压制的块体经520°C预烧,并保温5小时,得到样品烧结块;
[0108]4)将样品烧结块粉碎,放入尼龙罐中,加入酒精,经过8小时的二次湿法球磨,充分混合磨细后,在110°c下烘干后造粒,造粒后的粉体经60目和120目筛网双层过筛,两筛之间的部分即为所需粒度的瓷料粉末;
[0109]5)将瓷料粉末按需要压制成型(片状或柱状),在750°C下烧结4小时成瓷,即可得到无玻璃低温烧结温度稳定型微波介质陶瓷材料。
[0110]本发明制得的无玻璃低温烧结温度稳定型微波介质陶瓷材料的介电常数随成分变化在8~45之间,QXf值分布在1880GHz~103750GHz,谐振频率温度系数在-91ppm/°C~+25ppm/°C可调,最小 |TCF| 值可以达到 1.2ppm/°C。
[0111]需要指出的是,按照本发明的技术方案,上述实例还可以举出许多,根据 申请人:大量的实验结果证明,在 本发明的权利要求书所提出的范围,均可以达到本发明的目的。

查看更多专利详情