早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

保守的奈瑟球菌抗原制作方法

  • 专利名称
    保守的奈瑟球菌抗原制作方法
  • 发明者
  • 公开日
  • 申请日期
  • 优先权日
  • 申请人
  • 文档编号
  • 关键字
  • 技术领域
    本发明涉及奈瑟球菌属(Neisseria)细菌的保守抗原
  • 背景技术
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:保守的奈瑟球菌抗原的制作方法 脑膜炎奈瑟球菌(Neisseria meningitidis)是不能动的、对人有致病性的革兰阴性双球菌。根据该菌的荚膜多糖,已经鉴定出12种脑膜炎奈瑟球菌的血清型。A型是亚撒哈拉-非洲地区流行病中最常见的病原体。B型和C型血清型菌是导致美国以及大多数发达国家内绝大多数病例的原因。W135和Y型血清型菌是导致美国和发达国家的其余病例的原因。目前使用的脑膜炎球菌疫苗是由血清型A、C、Y和W135组成的四价多糖疫苗。然而,这种方法不能用于B型脑膜炎球菌,因为menB荚膜多糖是α(2-8)-相连的N-乙酰基神经氨酸的聚合物,它也存在于哺乳动物组织中。一种menB疫苗方法采用外膜蛋白(OMP)的混合物。为了克服抗原性变异,已经构建了含有高达9种不同膜孔蛋白的多价疫苗(例如,Poolman JT(1992)“脑膜炎球菌疫苗的发展”Infect.Agents Dis.413-28)。用于外膜疫苗的其它蛋白是opa和opc蛋白,但是这些方法均不能克服抗原性变异(例如Ala′Aldeen和Borriello(1996)“脑膜炎球菌运铁蛋白结合蛋白1和2均是外露的,并产生能杀伤同源和异源菌株的杀菌性抗体”Vaccine 14(1)49-53)。大量的奈瑟球菌蛋白质和核苷酸序列公开于WO99/24578、WO99/36544、WO99/57280和WO00/22430。这4件申请的内容在此引用作为参考。菌株MC58的全面序列数据公开在Tettelin等人的Science(2000)2871809-1815中,该文献的内容也在此引用作为参考。发明描述为了确保在菌株间的最大识别性和反应性,可以使用在不同的奈瑟球菌物种、血清型和菌株之间保守的蛋白质区域。因此,本发明提供了蛋白质,这些蛋白质含有在大多数奈瑟球菌(尤其是脑膜炎奈瑟球菌和淋病奈瑟球菌)中共有的氨基酸序列区段。本发明提供了含有奈瑟球菌蛋白片段的蛋白质,其中所述片段包含n个连续的保守氨基酸,条件是本发明在其范围内并不包括全长奈瑟球菌蛋白。根据具体蛋白质,n为7或更高(例如,8、10、12、14、16、18、20或更高)。所述片段宜包含奈瑟球菌蛋白的一个抗原或免疫原区域。“保守的”氨基酸是在至少x%奈瑟球菌的特定奈瑟球菌蛋白中存在的氨基酸。x的值可以是50%或更高,例如66%、75%、80%、90%、95%或甚至100%(即该氨基酸存在于所有奈瑟球菌的有关蛋白质中)。为了确定一个氨基酸在特定奈瑟球菌蛋白中是否是“保守的”,需要比较在多种不同奈瑟球菌(“参照群”)的有关蛋白序列中的该氨基酸。参照群可包括大量不同的奈瑟球菌物种(优选脑膜炎奈瑟球菌和淋病奈瑟球菌),或者可以包括单一物种。参照群可包括某一特定物种的大量不同的血清型(例如脑膜炎奈瑟球菌的A、B、C。、W135、X、Y、Z和29E血清型),或者包括单一血清型。参照群还可包括某一特定血清型的大量不同的菌株(例如B型脑膜炎奈瑟球菌的NG6/88、BZ198、NG3/88、297-0、BZ147、BZ169、528、BZ133、NGE31、NGH38、NGH15、BZ232、BZ83和44/76株)。一种优选的参照群由5种最常见的脑膜炎奈瑟球菌菌株和/或5种最常见的淋病奈瑟球菌菌株构成。
参照群宜含有来自合适的系统发生树的k不同分支的k菌株,例如在以下文献中公开的那些(a)Ni等人(1992)Epidemiol Infect 109227-239;(b)Wolff等人(1992)核酸研究(Nucl.Acids Res.)2046757;(c)Bygraves & Maiden(1992)遗传微生物学杂志(J.Gen.Microbiol.);(d)Caugant等人,(1987)细菌学杂志(J.Bacteriol.)692781-2792。另一种可供使用的系统发生树如本申请图8所示,另一种如图9b所示。
应理解,某一特定物种、血清型或菌株,只有它编码蛋白质且该蛋白质中存在有关氨基酸时,才被包括在参照群中。例如,在下述ORF40中的氨基酸例子中,参照群不应包括淋病奈瑟球菌,因为该物种不含有ORF40。
因此,对于在脑膜炎奈瑟球菌和淋病奈瑟球菌中都存在的蛋白质,优选的参照群包括■脑膜炎奈瑟球菌A,Z2491菌株■脑膜炎奈瑟球菌B,NG6/88菌株■脑膜炎奈瑟球菌W,A22菌株■淋病奈瑟球菌,Ng F62菌株这些菌株在下列文献中有描述(a)Seiler A.等人(1996)分子微生物学(Mol.Microbiol.)19(4841-856);(b)Maiden等人,(1998)美国科学院院报(Proc.Natl.Acad.Sci.USA)953140-3145;(c)Virji等人(1992)分子微生物学(Mol.Microbiol.)61271-1279;(d)Dempsey等人,(1991)细菌学杂志(J.Bacteriol.)1735476-5486。
然而,对于仅存在于脑膜炎奈瑟球菌中的蛋白质,优选的参照群包括■脑膜炎奈瑟球菌A,Z2491菌株■脑膜炎奈瑟球菌B,NG6/88菌株■脑膜炎奈瑟球菌W,A22菌株不同奈瑟球菌的氨基酸序列可以用计算机轻易地进行比较。这通常涉及用算法,例如CLUSTAL[Thompson etal(1994)核酸研究(Nucl.Acids Res.)224673-4680;TrendsBiochem Sci(1998)23403-405]或PILEUP算法[GCG Wisconsin软件包的组成部分,优选9.0版],将多个序列进行比对。
保守氨基酸在多序列比对中是很明显的,在有关的氨基酸位置处,大多数被比对的序列会含有特定的氨基酸。还可以用程序,例如BOXSHADE[可从例如NIH在线获得]、PRETTYBOX[GCG Wisconsin,版本10]或JALVIEW[可从EB在线获得],保守氨基酸可更清楚地用肉眼看出。
所述蛋白质优选含有在WO99/24578、WO99/36544、WO99/57280和WO00/22430中公开的蛋白质之一的片段、或在Tettelin等人Science(2000)2871809-1815中公开的2158ORF之一的片段。更具体地,它优选含有本文公开(见本文的实施例)的ORF4、ORF40、ORF46、蛋白质225、蛋白质235、蛋白质519、蛋白质726、蛋白质919和蛋白质953中一种或多种蛋白的片段。通常,本发明的蛋白不含有在WO99/24578、WO99/36544、WO99/57280、WO00/22430、或Tettelin等人文献中明确公开的蛋白质序列。
本发明还提供了含有附图中所示序列之一的蛋白质。
本发明的蛋白当然可用各种方法(例如重组表达、天然表达、从细胞培养中纯化、化学合成等)制成各种形式(例如天然的、融合蛋白等)。它们宜制成基本上纯的形式(即基本上不含其它奈瑟球菌或宿主细胞的蛋白)。
另一方面,本发明提供了能结合这些蛋白的抗体。它们可能是多克隆的或单克隆的,可用任何合适的方法制得。
另一方面,本发明提供了编码本发明蛋白的核酸。还应理解,本发明提供的核酸包括与这些序列互补的序列(例如用于反义或探针目的)。
此外,本发明提供了与实施例中公开的脑膜炎奈瑟球菌核酸杂交的核酸,优选在“高度严紧”条件下(如65℃,在0.1×SSC,0.5%SDS溶液)。
当然,本发明的核酸可用许多方式制得(例如化学合成,从基因组或cDNA文库、或从生物体本身制得等),并可采用各种形式(例如单链、双链、载体、探针等)。
另外,术语“核酸”包括DNA和RNA,以及它们的类似物,如含有修饰骨架的那些类似物,还包括肽核酸(PNA)等。
另一方面,本发明提供了含有本发明的核苷酸序列的载体(如表达载体)以及用这些载体转化的宿主细胞。
另一方面,本发明提供了包含本发明的蛋白、抗体和/核酸的组合物。例如,这些组合物适合用作疫苗,或作为诊断性试剂,或作为免疫原性组合物。
本发明还提供了本发明的核酸、蛋白或抗体用作药剂(例如作为疫苗)或作为诊断性试剂。本发明还提供了本发明的核酸、蛋白或抗体在生产下列物质中的应用(i)用于治疗或预防奈瑟球菌感染的药剂;(ii)用于检测奈瑟球菌或检测抗奈瑟球菌抗体是否存在的诊断性试剂;和/或(iii)用于产生抗奈瑟球菌属细菌的抗体的试剂。该用途宜适用于奈瑟球菌属的所有物种。
当奈瑟球菌蛋白含有超过q%的保守的氨基酸时,本发明就提供了奈瑟球菌蛋白(或其片段)作为非菌株特异性的蛋白的用途,该蛋白在多个物种、血清型和菌株之间表现出交叉反应性。q值可以是50%60%、75%、80%、90%、95%或甚至100%。
本发明还提供了一种治疗患者的方法,该方法包括给予患者治疗有效量的本发明的核酸、蛋白和/或抗体。
另一方面,本发明提供了各种方法。
提供了一种生产本发明蛋白的方法,该方法包括步骤在诱导蛋白表达的条件下,培育本发明的宿主细胞。
提供了一种生产本发明的蛋白或核酸的方法,该方法包括步骤部分或全部用化学方法合成蛋白质或核酸。
提供了一种检测本发明的多核苷酸的方法,该方法包括下列步骤(a)在杂交条件下使本发明的核酸探针与生物样品接触,形成双链体;和(b)检测所述双链体。
提供了一种检测本发明的蛋白质的方法,该方法包括下列步骤(a)在适合形成抗体-抗原复合物的条件下使本发明的抗体和生物样品接触;和(b)检测所述复合物。
下面列出了可用于实施本发明(例如处于免疫接种或诊断目的使用所公开的序列)的标准技术和程序的概述。这一概述并不限制本发明,相反它给出了可供使用但是并非必需的例子。
综述除非另有描述,本发明的实施将采用分子生物学、微生物学、重组DNA和免疫学的常规技术,这些均是本领域技术人员所知的。这些技术在下列文献中有完整的描述例如,Sambrook《分子克隆实验指南》第2版(1989);《DNA克隆》第I和II卷(D.N.Glover编1985);《寡核苷酸合成》(M.J.Gait编,1984);《核酸杂交》(B.D.Hames和S.J.Higgins编.1984);《转录和翻译》(B.D.Hames和S.J.Higgins编,1984);《动物细胞培养》(R.I.Freshney编,1986);《固定化细胞和酶》(IRL出版社,1986);B.Perbal,《分子克隆实用指南》(1984);《酶学方法》系列丛书(Academic Press,Inc.),尤其是154和155卷;《哺乳动物细胞的基因转移载体》(J.H.Miller和M.P.Calos编,1987,Cold SpringHarbor Laboratory);Mayer和Walker编(1987),《细胞和分子生物学的免疫化学方法》(Academic Press,London);Scopes,(1987)《蛋白质纯化原理和实践》第2版(Springer-Verlag,N.Y.),以及《实验免疫学手册》I-IV卷(D.C.Weir和C.C.Blackwell编1986)。
在本说明书中采用了核苷酸和氨基酸的标准缩写。
本文引用的所有出版物、专利和专利申请均全部纳入本文作参考。具体地,国际专利申请WO99/24578、WO99/36544、WO99/57280和WO00/22430的内容被并入本文。
定义当组合物中总X+Y重量的至少85%是X时,则称含有X的组合物“基本上没有Y”。较佳的,X占组合物中X+Y总重量的至少约90%,更佳至少约95%或者甚至99%(重量)。
术语“包含”指“含有”和“由……构成”,例如“包含”X的组合物可以完全由X构成,或者可以含有X之外的物质,例如X+Y。
术语“异源”指在自然界中发现不在一起的两种生物学组分。此组分可以是宿主细胞、基因、或调控区如启动子。尽管异源组分在自然界中发现不在一起,但是它们能一起起作用,例如当与某基因异源的一种启动子与该基因操作性相连时。另一个例子是奈瑟球菌序列与小鼠宿主细胞异源。另一例子是来自相同或不同蛋白质的两个表位,它们以自然界没有的排列形式组装在单个蛋白质上。
“复制起点”是启动和调节多核苷酸(例如表达载体)复制的一种多核苷酸序列。复制起点可作为细胞内多核苷酸复制的自主性单位,能在其自身的控制下进行复制。复制起点是载体在特定宿主细胞中复制所需要的。有了某一复制起点,表达载体就能在细胞中合适蛋白的存在下高拷贝数的复制。复制起点的例子是在酵母中有效的自主复制序列;以及在COS-7细胞中有效的病毒性T-抗原。
“突变体”序列定义为与天然或公开的序列不同但具有序列相同性的DNA、RNA或氨基酸序列。根据具体的序列,天然或公开的序列与突变体序列之间的序列相同性程度宜大于50%(例如60%、70%、80%、90%、95%、99%或更高,其中序列相同性如上所述用Smith-Waterman算法计算出)。如本文所述,本文提供的核酸序列的核酸分子或区域的“等位基因变体”是在另一或第二个分离株的基因组中基本上相同的基因座上的核酸分子或区域,由于诸如突变或重组引起的自然变异,它们具有相似但不相同的核酸序列。编码区等位基因变体通常编码的蛋白具有与其比较基因所编码蛋白相似的活性。等位基因变体还可包含基因5′或3′非翻译区中的变化,例如在调节控制区中的变化(例如见美国专利5,753,235)。
表达系统奈瑟球菌核苷酸序列可在各种不同的表达系统中表达;例如与哺乳动物细胞、杆状病毒、植物、细菌和酵母一起使用的那些系统。
i.哺乳动物系统哺乳动物表达系统是本领域中已知的。哺乳动物启动子是能结合哺乳动物RNA聚合酶并启动下游(3′)编码序列(如结构基因)转录成mRNA的任何DNA序列。启动子具有一个转录起始区,其通常邻近编码序列的5′端,还具有一个TATA盒,其通常位于转录起始位点上游25-30个碱基对(bp)处。认为TATA盒指导RNA聚合酶II在正确位点开始RNA合成。哺乳动物启动子还含有一个上游启动子元件,其通常位于TATA盒上游100至200bp内。该上游启动子元件决定了转录启动的速度,并可在两个方向之一上起作用[Sambrook等人(1989)“克隆基因在哺乳动物细胞中的表达”《分子克隆实验手册》,第2版]。
哺乳动物病毒基因通常是高表达的,具有宽的宿主范围;因此,编码哺乳动物病毒基因的序列提供了特别有用的启动子序列。例子包括SV40早期启动子、小鼠乳房肿瘤病毒LTR启动子、腺病毒主要晚期启动子(Ad MLP)以及单纯疱疹病毒启动子。另外,从非病毒基因(如鼠金属硫蛋白基因)衍生的序列也提供了有用的启动子序列。表达可以是组成型的或受调控的(诱导型),取决于启动子能否在激素反应性细胞中用促糖皮质激素诱导。
增强元件(增强子)的存在,联合上述启动子元件通常会提高表达水平。增强子是这样一种调控性DNA序列,当其与同源或异源启动子相连,合成在正常的RNA起始位点开始时,它能刺激转录提高1000倍。当增强子位于转录起始位点的上游或下游,处于正常或翻转方向,或距离启动子1000个核苷酸以上的距离时,它均具有活性[Maniatis等人(1987)Science 2361237;Alberts等人(1989)《细胞分子生物学》,第2版]。从病毒衍生获得的增强子元件可能是特别有用的,因为它们通常具有较宽的宿主范围。例子包括SV40早期基因增强子[Dijkema等人(1985)EMBO J.4761]以及衍生自Rous肉瘤病毒的长末端重复序列(LTR)的增强子/启动子[Gorman等人(1982b)Proc.Natl.Acad.Sci.796777]以及来自人巨细胞病毒的增强子/启动子[Boshart等人(1985)Cell 41521]。另外,一些增强子仅仅在诱导物(例如激素或金属离子)的存在下是可调节的并具有活性[Sassone-Corsi和Borelli(1986)Trends Genet.2215;Maniatis等人(1987)Science2361237]。
DNA分子可在哺乳动物细胞中胞内表达。启动子序列可以和DNA分子直接相连,在这种情况下,重组蛋白的N端第一个氨基酸始终是甲硫氨酸,其由ATG起始密码子编码。如果需要,可通过和溴化氰体外培育来从蛋白上切下此N端。
另外,外来蛋白也可从细胞中分泌到生长培养基中,方法是产生嵌合的DNA分子,该DNA分子编码的融合蛋白包括一前导序列片段,该片段在哺乳动物细胞中提供了外源蛋白的分泌。较佳的,在前导序列片段和外源基因之间可以有能在体内或体外断裂的加工位点。前导序列片段通常编码一种信号肽,该信号肽由引导蛋白分泌出细胞的疏水性氨基酸组成。腺病毒三联前导序列是哺乳动物细胞中分泌外来蛋白的一个前导序列的例子。
通常,哺乳动物细胞识别的转录终止和聚腺苷酸化序列是位于翻译终止密码子3′的调控区域,因此它和启动子元件一起连接在编码序列的侧面。成熟mRNA的3′端由定点的转录后断裂和聚腺苷酸化形成[Birnstiel等人(1985)Cell 41349;Proudfoot和Whitelaw(1988)″真核RNA的终端和3′端加工″《转录和剪接》(B.D.Hames和D.M.Glover编);Proudfoot(1989)Trends Biochem.Sci.14105]。这些序列指导mRNA的转录,mRNA能被翻译成该DNA编码的多肽。转录终止子/聚腺苷酸化信号的例子包括从SV40衍生的那些[Sambrook等人(1989)“克隆基因在培养的哺乳动物细胞中的表达”《分子克隆实验指南》]。
通常,上述组件,包括启动子、聚腺苷酸化信号以及转录终止序列被一起放在表达构建物中。如果需要,表达构建物中还包括增强子、具有功能性剪接供体和受体位点的内含子以及前导序列。表达构建物通常以复制子形式维持,例如是能在宿主(如哺乳动物细胞或细菌)中稳定维持的染色体外元件(如质粒)。哺乳动物复制系统包括从动物病毒衍生的那些系统,其需要反式作用因子来进行复制。例如,含有乳多空病毒复制系统的质粒,如SV40[Gluzman(1981)Cell 23175]或多瘤病毒,在合适的病毒T抗原存在下复制出极高的拷贝数。哺乳动物复制子的其它例子包括衍生自牛乳头瘤病毒和EB病毒的复制子。另外,复制子可以有两个复制系统,从而使其能维持在例如哺乳动物细胞中进行表达并能在原核宿主中克隆和扩增。这些哺乳动物细菌穿梭载体的例子包括pMT2[Kaufman等人(1989)Mol.Cell.Biol.9946]和pHEBO[Shimizu等人(1986)Mol.Cell.Biol.61074]。
所用的转化程序取决于待转化的宿主。将异源多核苷酸导入哺乳动物细胞中的方法是本领域所知的,其包括葡聚糖介导的转染、磷酸钙沉淀、Polybrene(1,5-二甲基-1,5-二氮十一亚甲基聚甲溴化物)介导的转染、原生质体融合、电穿孔、将多核苷酸包裹在脂质体中以及将DNA直接显微注射到胞核中。
可作为宿主进行表达的哺乳动物细胞系是本领域中已知的,其包括许多从美国典型培养物保藏中心(ATCC)获得的无限增殖细胞系,包括但不局限于,中国仓鼠卵巢(CHO)细胞、海拉细胞、乳仓鼠肾(BHK)细胞、猴肾细胞(COS)、人肝细胞癌细胞(如HepG2)和其它许多细胞系。
ii.杆状病毒系统也可将编码蛋白质的多核苷酸插入合适的昆虫表达载体中,并与该载体中的控制元件操作性相连。载体构建采用本领域已知的技术。总地来说,表达系统的组分包括一种转移载体,通常是细菌质粒,其含有杆状病毒基因组片段以及便于插入待表达异源基因的限制性位点;野生型杆状病毒,其序列与转移载体中的杆状病毒特异性片段同源(这使得异源基因能同源重组到杆状病毒基因组中);以及合适的昆虫宿主细胞和生长培养基。
将编码蛋白质的DNA序列插入转移载体中后,将载体和野生型病毒基因组转染到昆虫宿主细胞中,使载体和病毒基因组重组。表达包装的重组病毒,鉴定并纯化重组噬斑。杆状病毒/昆虫细胞表达系统材料及其方法,除别的以外,可以试剂盒形式购自Invitrogen,San Diego CA(″MaxBac″试剂盒)。这些技术通常是本领域技术人员所知的,在Summers和Smith的Texas Agricultural Experiment Station Bulletin No.1555(1987)(后称“Summer和Smith的文章”)中有充分描述。
在将编码蛋白质的DNA序列插入杆状病毒基因组之前,通常将上述组件,包括启动子、前导序列(如果需要)、感兴趣的编码序列以及转录终止序列装配在中间置换型构建物(转移载体)中。该构建物可含有单个基因以及操作性相连的调控元件;多个基因,每个基因有其自己的一套操作性相连调控元件;或是由同一组调控元件调控的多个基因。中间置换型构建物通常保持在一个复制子中,例如能在宿主(如细菌)内稳定保持的染色体外元件(如质粒)。复制子将具有一个复制系统,从而使其能保持在合适的宿主中进行克隆和扩增。
目前,用来将外源基因导入AcNPV的最常用的转移载体是pAc373。还可设计本领域技术人员已知的其它许多载体。这些载体例如包括,pVL985(其将多角体蛋白的起始密码子从ATG变为ATT,在ATT下游32个碱基对处引入一个BamHI克隆位点;见Luckow和Summers,Virology(1989)1731)。
质粒通常还含有多角体蛋白聚腺苷酸化信号(Miller等人(1988)Ann.Rev.Microbiol.,42177)以及用来在大肠杆菌中选择和繁殖的原核氨苄青霉素抗性(amp)基因和复制起点。
杆状病毒转移载体通常含有杆状病毒启动子。杆状病毒启动子是能结合杆状病毒RNA聚合酶并启动下游(5′到3′)编码序列(如结构基因)转录成mRNA的DNA序列。启动子具有一个转录起始区,该区通常邻近编码序列的5′端。该转录起始区通常包括一个RNA聚合酶结合位点以及一个转录起始位点。杆状病毒转移载体还可能具有称为增强子的第二区,如果该区域存在,它通常远离结构基因。表达可以是调控型或组成型的。
在病毒感染周期晚期大量转录的结构基因提供了特别有用的启动子序列。例子包括从编码病毒多角体蛋白的基因衍生获得的序列,Friesen等人(1986)“杆状病毒基因表达的调控”《杆状病毒分子生物学》(Walter Doerfler编辑);EPO公开号127839和155476;以及编码p10蛋白的基因,Vlak等人(1988),J.Gen.Virol.69765。
编码合适的信号序列的DNA可以衍生自分泌的昆虫或杆状病毒蛋白(如杆状病毒多角体蛋白基因)的基因(Carbonell等人,(1988)Gene,73409)。另外,由于哺乳动物细胞翻译后修饰的信号(如信号肽断裂、蛋白水解断裂和磷酸化)看来可被昆虫细胞识别,且分泌和胞核积累所需的信号看来在非脊椎动物细胞和脊椎动物细胞之间是保守的,因此也可用非昆虫来源的前导序列来提供昆虫中的分泌,这些前导序列例如是从编码人α-干扰素(Maeda等人(1985),Nature 315592)、人胃泌素释放的肽(Lebacq-Verheyden等人(1988),Molec.Cell.Biol.83129)、人IL-2(Smith等人(1985)PNAS,828404)、小鼠IL-3(Miyajima等人(1987)Gene 58273)和人葡糖脑苷脂酶(Martin等人(1988)DNA,799)的基因衍生获得的。
重组多肽或聚蛋白可以在胞内表达,或如果它用合适的调控序列表达,它可被分泌。非融合的外源蛋白的良好胞内表达理想的通常需要具有短前导序列的异源基因在ATG起始信号前有合适的翻译起始信号。如果需要,可通过和溴化氰体外培育来从成熟蛋白上切下N端甲硫氨酸。
另外,可通过产生嵌合的DNA分子将非天然分泌的重组聚蛋白或蛋白从昆虫细胞中分泌出来,该嵌合的DNA分子所编码的融合蛋白包含一前导序列片段,该片段提供了昆虫中分泌外源蛋白的作用。该前导序列片段通常编码一种信号肽,该信号肽包含的疏水性氨基酸引导蛋白质转移到内质网中。
在插入了编码该蛋白表达产物前体的DNA序列和/或基因后,用转移载体的异源DNA和野生型杆状病毒的基因组DNA共同转化(通常是共转染)昆虫细胞宿主。此构建物的启动子和转录终止序列通常包含2-5kb的杆状病毒基因组片段。将异源DNA引入杆状病毒中所需位点内的方法是本领域所知的。(见Summers和Smith的文章,同上;Ju等人(1987);Smith等人,Mol.Cell.Biol.(1983)32156;和Luckow和Summers(1989))。例如,插入可以是通过同源双交换重组来插入一个基因如多角体蛋白基因中;插入还可以是插入工程改造入所需杆状病毒基因内的限制性酶切位点中。Miller等人(1989),Bioessays 491。当DNA序列被克隆在表达载体多角体蛋白基因位置中时,其5′和3′均侧接了多角体蛋白特异性序列,并位于多角体蛋白启动子的下游。
随后将新形成的杆状病毒表达载体包装到感染性重组杆状病毒中。发生同源重组的频率很低(在约1%和5%之间);因此,共转染后产生的大多数病毒仍是野生型病毒。因此,需要用一种方法来鉴别重组病毒。该表达系统的一个优点是肉眼筛选能区分重组病毒。在病毒感染后期,天然病毒产生的多角体蛋白在受其感染细胞的胞核中产生的水平非常高。累积的多角体蛋白形成的包涵体还含有包埋颗粒。这些包涵体的大小为15微米,它们具有高度的折光性,从而使它们呈现明亮的发光外观,在光学显微镜下很容易观察。感染了重组病毒的细胞缺少包涵体。为了区分重组病毒和野生型病毒,用本领域已知的技术将转染上清接种到单层昆虫细胞上形成噬斑。即,在光学显微镜下筛选存在(表明是野生型病毒)或不存在(表明是重组病毒)包涵体的噬斑。“当代微生物学方法”第2卷(Ausubel等人编辑),16.8(增补10,1990);Summers和Smith,同上;Miller等人(1989)。
已经开发出感染进入几种昆虫细胞的重组杆状病毒表达载体。例如,已经开发出用于感染以下昆虫细胞的重组杆状病毒埃及伊蚊、苜蓿丫纹夜蛾、家蚕、黑尾果蝇、草地夜蛾和粉纹夜蛾(WO89/046699;Carbonell等人(1985)J.Virol.56153;Wright(1986)Nature 321718;Smith等人(1983)Mol.Cell.Biol.32156;综述见Fraser等人(1989)InVitro Cell.Dev.Biol.25225)。
可以购得细胞和细胞培养基用于在杆状病毒/表达系统中直接表达和融合表达异源多肽;细胞培养技术是本领域技术人员通常所知的。例如见Summers和Smith,同上。
然后,经修饰的昆虫细胞可以生长在合适的营养培养基中,该培养基能稳定地保持该质粒于修饰的昆虫宿主中。当表达产物的基因处于可诱导的控制下时,可以使宿主生长至高密度,并诱导表达。另外,当表达是组成型表达时,产物将被连续表达到培养基中,营养性培养基必需不断循环,取出感兴趣的产物同时补充消耗的营养物。产物可用以下这些技术来纯化例如层析,如HPLC、亲和层析、离子交换层析等;电泳;密度梯度离心;溶剂抽提等。产物可按需作进一步纯化,以基本上除去所有也分泌到培养基中或由昆虫细胞裂解而产生的昆虫蛋白,以提供一种至少基本上不含宿主碎片如蛋白质、脂质和多糖的产物。
为了进行蛋白质表达,将从转化子衍生获得的重组宿主细胞培育在允许重组蛋白的编码序列表达的条件下。这些条件将随所选定的宿主细胞而变。然而,本领域技术人员容易根据本领域已知的知识来确定该条件。
iii.植物细胞表达系统本领域已知有许多植物细胞培养系统和全植物遗传表达系统。典型的植物细胞基因表达系统包括在以下专利中描述的那些,例如US5,693,506;US5,659,122;和US5,608,143。Zenk,Phytochemistry 303861-3863(1991)中描述了在植物细胞培养物中遗传表达的其它例子。除上述参考文献外,关于植物蛋白信号肽的描述还可在下列文献中找到Vaulcombe等人,Mol.Gen.Genet.20933-40(1987);Chandler等人,Plant MolecularBiology 3407-418(1984);Rogers,J.Biol.Chem.2603731-3738(1985);Rothstein等人,Gene 55353-356(1987);Whittier等人,Nucleic Acids Research 152515-2535(1987);Wirsel等人,Molecular Microbiology 33-14(1989);Yu等人,Gene 122247-253(1992)。关于用植物激素、赤霉素酸和赤霉素酸诱导分泌的酶调节植物基因表达的描述可在R.L.Jones和J.MacMillin,Gibberellins,《植物生理学进展》,Malcolm B.Wilkins编辑,1984 Pitman Publishing Limited,London,21-52页中找到。描述其它调节代谢的基因的参考文献参见Sheen,Plant Cell,21027-1038(1990);Maas等人,欧洲分子生物学协会杂志(EMBO J.)93447-3452(1990);Benkel和Hickey,美国科学院院报(Proc.Natl.Acad.Sci.).841337-1339(1987)。
通常,利用本领域已知的技术,将所需的多核苷酸序列插入一表达盒中,该表达盒含有为在植物中操作而设计的基因调控元件。将该表达盒插入所需的表达载体中,表达盒的上游和下游有适合在植物宿主中表达的伴随序列。这些伴随序列可来自质粒或病毒,并为载体提供所需的性能,以允许载体将DNA从起初的克隆宿主(如细菌)中移动到所需植物宿主中。基础的细菌/植物载体构建物最好能提供宽的宿主范围原核复制起点;原核可选择标记;以及,对于农杆菌转化而言,宜提供T DNA序列用于农杆菌介导的转移至植物染色体。当异源基因不易检测时,该构建物最好还具有一个适用于确定植物细胞是否已经转化的可选择标记基因。关于合适标记(例如对于禾草类家族成员)的综述可在Wilmink和Dons,1993,Plant Mol.Biol.Reptr,11(2)165-185中找到。
还建议采用适合将异源序列整合到植物基因组中的序列。这些序列可能包括用于同源重组的转座子序列以及允许将异源表达盒随机插入植物基因组中的Ti序列。合适的原核可选择标记包括抗生素(如氨苄青霉素或四环素)抗性标记。编码其它功能的其它DNA序列也可存在于载体中,这是本领域所知的。
本发明的核酸分子可包括在一个表达盒中来表达感兴趣的蛋白质。通常只要一个表达盒,但是两个或多个表达盒也是可行的。除了编码异源蛋白的序列外,重组表达盒还含有下列元件启动子区域、植物5′非翻译序列、起始密码子(根据结构基因原来是否具有而定)、以及转录和翻译终止序列。表达盒5′和3′端的独特限制性酶位点能使表达盒方便地插入预先存在的载体中。
异源编码序列可以用于任何与本发明有关的蛋白。编码感兴趣的蛋白的序列将编码出一个信号肽,该信号肽能适当地加工和转运蛋白质,并且通常缺少可能会导致本发明的所需蛋白与膜结合的序列。由于对于大部分来说,转录起始区将针对发芽期间表达和转运的基因,采用提供转运的信号肽,也可提供转运感兴趣的蛋白质。通过这种方式,感兴趣的蛋白将从表达该蛋白的细胞中转运出来,并能被有效地收获。通常,种子中的分泌是通过糊粉或小盾体上皮层进入种子的胚乳。尽管不需要使蛋白从产生该蛋白的细胞中分泌出来,但是这种分泌有利于重组蛋白的分离和纯化。
由于所需基因产物的最终表达将在真核细胞中进行,因此需要确定克隆的基因部分是否含有作为内含子被宿主剪接体机制加工的序列。如果是这样,需要对“内含子”区进行定点诱变,以防止一部分遗传信息作为错误的内含子密码而丧失,Reed和Maniatis,Cell 4195-105,1985。
可用微量移液管以机械方式转移重组DNA,将载体直接显微注射到植物细胞中。Crossway,Mol.Gen.Genet,202179-185。还可用聚乙二醇将遗传物质转移到植物细胞中,Krens等人,Nature,296,72-74,1982。导入核酸片段的另一种方法是用小颗粒进行高速弹道贯穿,在这些小珠或颗粒的基质中或表面上带有核酸,Klein等人,Nature,327,70-73,1987,Knudsen和Muller,1991,Planta,185330-336提出用颗粒轰击大麦胚乳以产生转基因大麦。还有一种导入方法是使原生质体和其它实体(微细胞(minicell)、细胞、溶酶体或其它可融合的脂质表面体)融合,Fraley等人,美国科学院院报(Proc.Natl.Acad.Sci.USA),79,1859-1863,1982。
载体也可通过电穿孔导入植物细胞中。(Fromm等人,PNAS 825824,1958)。在该技术中,在含有基因构建物的质粒存在下电穿孔植物原生质体。高电场强度的电脉冲使生物膜可逆地被通透,从而允许导入质粒。电穿孔的植物原生质体重新形成细胞壁,分裂并形成植物愈伤组织。
能分离出原生质体并能培育成全再生植物的所有植物,都能用本发明进行转化,从而回收得到含有转基因的全植物。已经知道实际上可以从培育的细胞或组织再生所有的植物,其包括但不局限于,甘蔗、甜菜、棉花、果实和其它树、豆科植物和蔬菜的所有主要种类。一些合适的植物包括,例如,草莓属、莲花属、苜蓿属、驴食豆属、三叶草属、胡卢巴属、豇豆属、柑橘属、亚麻属、老鹳草属、木薯属(Manihot)、胡萝卜属(Daucus)、鼠耳芥属、芸苔属、萝卜属、白芥属、颠茄属、辣椒属、曼陀罗属、天仙子属、番茄属、烟草属、茄属、碧冬茄属、毛地黄属、Majorana、菊苣属、向日葵属、莴苣属、雀麦属、天门冬属、金鱼草属、龙骨角属、龙面花属(Nemesia)、天竺葵属、稷属、狼尾草属、毛茛属、千里光属、Salpiglossis、香瓜属、Browaalia、大豆属、黑麦草属、玉蜀黍属、小麦、蜀黍属和曼陀罗属各种类。
再生方式随各种植物而有所不同,但是通常是首先提供含有异源基因拷贝的转化的原生质体悬液。形成愈伤组织,从愈伤组织中诱生出枝条,随后是根。另外,从原生质体悬液可以诱生形成胚胎。这些胚胎象天然的胚胎那样发芽形成植物。培养基通常含有各种氨基酸和激素,如植物生长素和细胞分裂素。尤其是对于玉米和苜蓿属来说,在培养基中加入谷氨酸和脯氨酸也是很有利的。枝条和根通常同时发育。有效的再生取决于培养基、基因型以及培养史。如果控制了这三个变量,那么再生能完全再现和重复。
在一些植物细胞培养系统中,本发明所需的蛋白可能被排泄出来,或者蛋白可从全植物中提取出来。当本发明所需的蛋白被分泌到培养基中后,就可进行收集。或者,可以用机械方式破碎胚以及无胚-半种子或其它植物组织,以释放出分泌到细胞和组织之间的蛋白。将该混合物悬于缓冲液中,以收回可溶性蛋白。然后用常规的蛋白分离和纯化方法纯化重组蛋白。用常规方法调节时间、温度、pH、氧和体积等参数,以优化异源蛋白的表达和回收。
iv.细菌系统细菌表达技术是本领域已知的。细菌启动子是能结合细菌RNA聚合酶并启动下游(3′)编码序列(如结构基因)转录成mRNA的DNA序列。启动子具有一个转录起始区,其通常位于编码序列的5′端附近。该转录起始区通常包括RNA聚合酶结合位点以及一个转录起始位点。细菌启动子可能还有第二个功能区域称为操纵子,它可能与毗邻的RNA合成开始的RNA聚合酶结合位点重叠。该操纵子允许(可诱导)对转录的负调节,因为基因阻遏蛋白可能结合操纵子并因而抑制特定基因的转录。在负调节元件(如操纵子)不存在时,可能发生组成型表达。另外,正调节可通过基因激活蛋白结合序列来实现,如果有的话,该结合序列通常邻近RNA聚合酶结合序列的(5′)。基因激活蛋白的例子是分解代谢物激活剂蛋白(CAP),它帮助启动大肠杆菌(E.coli)中的lac操纵子的转录[Raibaud等人(1984)Annu.Rev.Genet.18173]。因此,表达的调控可能是正作用或负作用,从而增强或减弱转录。
编码代谢途径中的酶的序列提供了特别有用的启动子序列。例子包括衍生自糖(如半乳糖、乳糖(lac)[Chang等人(1977)Nature 1981056]和麦芽糖)代谢酶的启动子序列。其它例子包括衍生自生物合成酶(如色氨酸(trp))[Goeddel等人(1980)Nuc.Acids Res.84057;Yelverton等人(1981)Nucl.Acids Res.9731;美国专利4,738,921;EP-A-0036776和EP-A-0121775]的启动子序列。β-内酰胺酶(bla)启动子系统[Weissmann(1981)″干扰素的克隆和其它错误″《干扰素3》(I.Gresser编辑)],λ嗜菌体PL[Shimatake等人(1981)Nature 292128]和T5[美国专利4,689,406]启动子系统也提供了有用的启动子序列。
另外,非天然存在的合成的启动子也可象细菌启动子一样起作用。例如,一种细菌或嗜菌体启动子的转录激活序列可以和另一种细菌或嗜菌体启动子的操纵子序列连接在一起,形成合成的杂交启动子[美国专利4,551,433]。例如,tac启动子是杂合的trp-lac启动子,它由trp启动子以及受lac阻遏蛋白调节的lac操纵子序列组成[Amann等人(1983)Gene 25167;de Boer等人,(1983)Proc.Natl.Acad.Sci.8021]。另外,细菌启动子可包括非细菌来源但能结合细菌RNA聚合酶并启动转录的天然存在的启动子。天然存在的非细菌来源的启动子还能和相容的RNA聚合酶偶联在一起,从而在原核细胞中高水平地表达某些基因[Studier等人(1986)J.Mol.Biol.189113;Tabor等人(1985)Proc.Natl.Acad.Sci.821074]。另外,杂合的启动子还可由嗜菌体启动子以及大肠杆菌操纵子区域组成(EP-A-0267851)。
除了有功能的启动子序列外,有效的核糖体结合位点对于外来基因在原核细胞中的表达也是有用的。在大肠杆菌中,核糖体结合位点称为Shine-Dalgarno(SD)序列,其包括起始密码子(ATG)以及在起始密码子上游3-11个核苷酸处的长度为3-9个核苷酸的序列[Shine等人(1975)Nature 25434]。认为SD序列是通过SD序列和大肠杆菌16SrRNA的3′端之间碱基配对来促进mRNA与核糖体结合的[Steitz等人(1979)″信使RNA中的遗传信号和核苷酸序列″生物学调节和发育基因表达″(编者R.F.Goldberger)]。为了表达具有弱的核糖体结合位点的原核基因和真核基因[Sambrook等人(1989)″克隆基因在大肠杆菌中的表达″《分子克隆实验手册》]。
DNA分子可以在胞内表达。启动子序列可以直接与DNA分子相连,在这种情况下,N端的第一个氨基酸始终是甲硫氨酸,其由ATG起始密码子编码。如果需要,可通过和溴化氰体外培育或通过和细菌甲硫氨酸N-端肽酶体内或体外培育,将N端的甲硫氨酸从蛋白质上切下(EP-A-0219237)。
融合蛋白为直接表达提供了另一种方法。通常,将编码内源细菌蛋白或其它稳定的蛋白之N端部分的DNA序列与异源编码序列的5′端融合。在表达时,该构建物将提供这两个氨基酸序列的融合物。例如,λ噬菌体细胞基因可以和外源基因的5′端相连并在细菌中表达。所得融合蛋白宜保留一个酶(因子Xa)加工位点,以便将噬菌体蛋白与外源基因切开[Nagai等人(1984)Nature 309810]。融合蛋白也可用lacZ[Jia等人(1987)Gene 60197],trpE[Allen等人(1987)J.Biotechnol.593;Makoff等人(1989),J.Gen.Microbiol.13511]以及Chey[EP-A-0324647]基因的序列组成。两个氨基酸序列连接处的DNA序列可以编码或不编码一可切割的位点。另一个例子是遍在蛋白融合蛋白。这种融合蛋白由遍在蛋白区域组成,该区域宜保留一个酶(例如遍在蛋白特异性加工蛋白酶)加工位点,以便将外源蛋白和遍在蛋白切开。通过这种方法,可以分离获得天然的外源蛋白[Miller等人(1989)Bio/Technology 7698]。
另外,还可通过产生嵌合的DNA分子来将外源蛋白分泌出细胞,该嵌合的DNA分子编码的融合蛋白含有一个信号肽序列片段,该序列片段能使细菌中的外源蛋白分泌出来[美国专利4,336,336]。信号序列片段通常编码一个信号肽,该信号肽含有疏水性氨基酸,能指引蛋白分泌出细胞。蛋白质被分泌到生长培养基(革兰阳性菌)中或细胞内膜和外膜之间的周质间隙内(革兰阴性菌)。在编码的信号肽片段和外源基因之间宜具有能在体内或体外切割的加工位点。
编码合适信号序列的DNA可以从分泌性细菌蛋白的基因衍生获得,这些基因例如是大肠杆菌外膜蛋白基因(ompA)[Masui等人(1983),《基因表达的实验操作》;Ghrayeb等人(1984)EMBO J.32437]以及大肠杆菌碱性磷酸酶信号序列(phoA)[Oka等人(1985)Proc.Natl.Acad.Sci.827212]。另一个例子是,可采用各种芽孢杆菌菌株的α淀粉酶基因的信号序列将异源蛋白分泌出枯草芽孢杆菌[Palva等人(1982)Proc.Natl.Acad.Sci.USA795582;EP-A-0244042]。
通常,细菌所识别的转录终止序列是位于翻译终止密码子3′的调控区,它和启动子一起侧接在编码序列的两侧。这些序列指导mRNA的转录,而mRNA能被翻译成该DNA所编码的多肽。转录终止序列通常包括约50个核苷酸的DNA序列,该序列能形成帮助终止转录的茎环结构。例子包括衍生自具有强启动子的基因(如大肠杆菌中的trp基因以及其它生物合成的基因)的转录终止序列。
上述组件,包括启动子、信号序列(如果需要的)、感兴趣的编码序列以及转录终止序列通常一起被放在表达构建物中。表达构建物通常以复制子的形式维持,例如能在宿主(如细菌)中稳定维持的染色体外元件(如质粒)。复制子具有一个复制系统,从而允许其维持在原核宿主中或进行表达或进行克隆和扩增。另外,复制子可以是高拷贝数或低拷贝数的质粒。高拷贝数质粒的拷贝数大致在约5至200之间,通常在约10至150之间。含有高拷贝数质粒的宿主宜含有至少约10个质粒,更佳的含有至少约20个质粒。根据载体以及外源蛋白对宿主的影响,可以选择高拷贝数或低拷贝数的载体。
另外,表达构建物可以和一个整合载体一起整合入细菌基因组中。整合载体通常含有至少一个序列与细菌染色体同源,从而允许该载体整合。整合看来是载体和细菌染色体中的同源DNA之间重组的结果。例如,用不同芽孢杆菌菌株的DNA构建的整合载体整合到芽孢杆菌染色体中(EP-A-0127328)。整合载体还可包含噬菌体或转座子序列。
通常,染色体外构建物以及整合的表达构建物可含有可选择的标记,以便选择已经转化的菌株。可选择标记可在细菌宿主中表达,其包括赋予细菌对药物(如氨苄青霉素、氯霉素、红霉素、卡那霉素(新霉素)和四环素)抗性的基因[Davies等人(1978)Annu.Rev.Microbiol.32469]。可选择标记还可包括生物合成性基因,如在组氨酸、色氨酸以及亮氨酸生物合成途径中的那些基因。
另外,上述某些组件可以一起放在转化载体中。转化载体通常包含一个可选择标记,如上所述,该载体以复制子形式维持或发展成一个整合载体。
已经开发出了用于转化到许多细菌中的表达和转化载体(无论是染色体外复制子还是整合载体)。例如,已经开发出了用于下列细菌的表达载体枯草芽孢杆菌[Palva等人,(1982)Proc.Natl.Acad.Sci.USA 795582;EP-A-0036259和063953;PCT出版物WO84/04541],大肠杆菌[Shimatake等人,(1981)Nature 292128;Amann等人,(1985)Gene 40183;Studier等人,(1986)J.Mol.Biol.189113;EP-A-0036776、136829和136907],酪链球菌[Powell等人,(1988)Appl.Environ.Microbiol.54655];浅青紫链球菌[Powell等人,(1988)Appl.Environ.Microbiol.54655],浅青紫链霉菌[US patent4,745,056]。
将外源DNA导入细菌宿主的方法是本领域熟知的,通常包括用氯化钙或其它试剂(如二价阳离子和DMSO)处理对细菌进行转化。DNA还可通过电穿孔方法导入细菌细胞。转化程序通常因待转化的细菌种类而不同。[参见,例如使用杆菌Masson等人,(1989)FEMS Microbiol.Lett.60273;Palva等人,(1982)Proc.Natl.Acad.Sci.USA795582;EP-A-0036259和063953;WO84/04541;使用弯曲杆菌Miller等人,(1988)Proc.Natl.Acad.Sci.85856;和Wang等人,(1990)J.Bacteriol.172949;使用埃希氏大肠杆菌Cohen等人,(1973)Proc.Natl.Acad.Sci.692110;Dower等人,(1988)NucleicAcids Res.166127;Kushner(1978)″用ColE1-衍生质粒转化大肠杆菌的改进方法″Genetic EngineeringProceedings of the International Symposium on Genetic Engineering(H.W.Boyer和S.Nicosia编辑);Mandel等人,(1970)J.Mol.Biol.53159;Taketo(1988)Biochim.Biophys.Acia 949318;使用乳酸杆菌Chassy等人,(1987)FEMS Microbiol.Lett.44173;使用假单胞菌Fiedler等人,(1988)Anal.Biochem 17038;使用葡萄球菌Augustin等人,(1990)FEMS Microbiol.Lett.66203;使用链球菌Barany等人,(1980)J.Bacteriol.144698;Harlander(1987)″用电穿孔转化链球菌产乳酸微生物″Streptococcal Genetics(J.Ferretti和R.Curtiss III编辑);Perry等人,(1981)Infect.Immun.321295;Powell等人,(1988)Appl.Environ.Microbiol.54655;Somkuti等人,(1987)Proc.4th Evr.Cong.Biotechnology 1412]。
v.酵母表达酵母表达系统也是本领域技术人员所知的。酵母启动子是能结合酵母RNA聚合酶并启动下游(3′)编码序列(如结构基因)转录成mRNA的DNA序列。启动子具有一个转录起始区,它通常位于编码序列的5′端附近。该转录起始区通常包括RNA聚合酶结合位点(″TATA″盒)以及一个转录起始位点。酵母启动子可能还有第二个功能区域称为上游激活序列(UAS),如果存在的话,它通常远离结构基因。UAS能调节表达(可诱导)。在UAS不存在时,发生组成型表达。表达的调控可能是正作用或负作用的,从而增强或减弱转录。
酵母是一种发酵生物体,具有活泼的代谢途径,因此编码代谢途径中的酶的序列提供了特别有用的启动子序列。例子包括醇脱氢酶(ADH)(EP-A-0284044)、烯醇酶、葡萄糖激酶、葡萄糖-6-磷酸异构酶、甘油醛-3-磷酸-脱氢酶(GAP或GAPDH)、己糖激酶、磷酸果糖激酶、3-磷酸甘油酸变位酶、以及丙酮酸激酶(PyK)(EP-A-0329203)。编码酸性磷酸酶的酵母PHO5基因也提供了有用的启动子序列[Myanohara等人(1983)Proc.Natl.Acad.Sci.USA 801]。
另外,非天然存在的合成的启动子也可象酵母启动子一样起作用。例如,一种酵母启动子的UAS序列可以和另一种酵母启动子的转录激活区连接在一起,形成合成的杂合启动子。这种杂合启动子的例子包括与GAP转录激活区相连的ADH调控序列(美国专利No.4,876,197和4,880,734)。杂合启动子的其它例子包括由ADH2、GAL4、GAL10或PHO5基因的调控序列组成的启动子与糖酵解酶基因如GAP或PyK的转录激活区的组合(EP-A-0164556)。另外,酵母启动子可包括非酵母来源但能结合酵母RNA聚合酶并启动转录的天然存在的启动子。这些启动子的例子包括,尤其是,[Cohen等人,(1980)Proc.Natl.Acad.Sci.USA 771078;Henikoff等人,(1981)Nature 283835;Hollenberg等人,(1981)Curr.Topics Microbiol.Immunol.96119;Hollenberg等人,(1979)″细菌抗生素抗性基因在酿酒酵母中的表达″Plasmids of Medical,Environmental andCommercial Importance(K.N.Timmis和A.Puhler编辑);Mercerau-Puigalon等人,(1980)Gene 1163;Panthier等人,(1980)Curr.Genet.2109]。
DNA分子可以在酵母菌胞内表达。启动子序列可以直接与DNA分子相连,在这种情况下,重组蛋白N端的第一个氨基酸始终是甲硫氨酸,其由ATG起始密码子编码。如果需要,可通过和溴化氰体外培育将N端的甲硫氨酸从蛋白质上切下。
象在哺乳动物、植物、杆状病毒以及细菌表达系统中一样,融合蛋白为酵母表达系统提供了另一种方法。通常,将编码内源酵母蛋白或其它稳定的蛋白之N端部分的DNA序列与异源编码序列的5′端融合。在表达时,该构建物将提供这两个氨基酸序列的融合物。例如,酵母或人超氧化物歧化酶(SOD)基因可以和外源基因5′端相连并在酵母中表达。两个氨基酸序列连接处的DNA序列可以编码或不编码可切割的位点。例如参见EP-A-0196056。另一个例子是遍在蛋白融合蛋白。这种融合蛋白由遍在蛋白区域组成,该区域宜保留一个酶(例如遍在蛋白特异性加工蛋白酶)加工位点,以便将外源蛋白和遍在蛋白切开。因此,通过这种方法,可以分离获得天然的外源蛋白(例如WO88/024066)。
另外,还可通过产生嵌合的DNA分子来将外源蛋白从细胞分泌到生长培养基中,该嵌合的DNA分子编码的融合蛋白含有一个前导序列片段,该前导序列片段能使酵母中的外源蛋白分泌出来。较佳的,在编码的前导片段和外来基因之间宜具有能在体内或体外切割的加工位点。该前导序列片段通常编码了含有疏水性氨基酸的信号肽,其引导蛋白从细胞分泌出来。
编码合适信号序列的DNA可以从分泌性酵母蛋白的基因衍生获得,这些基因例如有酵母转化酶基因(EP-A-0012873;JPO 62096,086)以及A-因子基因(美国专利4,588,684)。另外,非酵母来源的前导序列(如干扰素前导序列)的存在也能提供分泌出酵母的作用(EP-A-0060057)。
较佳的一类分泌前导序列采用了酵母α-因子基因的片段,其含有″pre″信号序列和″pro″区。可采用的α因子片段的类型包括全长pre-proα因子前导序列(约83个氨基酸残基)以及截短的α-因子前导序列(通常约25至50个氨基酸残基)(美国专利4,546,083和4,870,008;EP-A-0324274)。采用α-因子前导片段提供分泌作用的其它前导序列包括杂合的α-因子前导序列,其由第一个酵母的pre序列以及第二个酵母α因子的pro区域组成(例如见WO89/02463)。
通常,酵母识别的转录终止序列是位于翻译终止密码子3′的调控区,其和启动子一起侧接在编码序列的两侧。这些序列指导mRNA的转录,而mRNA能被翻译成该DNA所编码的多肽。转录终止序列和其它酵母识别的终止序列的例子是编码糖酵解酶的那些转录终止序列。
上述组件,包括启动子、前导序列(如果需要的)、感兴趣的编码序列以及转录终止序列,通常被一起放在表达构建物中。表达构建物通常以复制子的形式保持,例如能在宿主(如酵母或细菌)中稳定保持的染色体外元件(如质粒)。复制子可能具有两个复制系统,从而允许其能维持在例如酵母中进行表达,并能维持在原核宿主进行克隆和扩增。这些酵母-细菌穿梭载体的例子包括YEp24[Botstein等人(1979)Gene 817-24],pCL/1[Brake等人,(1984)Proc.Natl.Acad.Sci.USA 814642-4646]和YRp17[Stinchcomb等人(1982)J.Mol.Biol.158157]。另外,复制子可以是高拷贝数或低拷贝数的质粒。高拷贝数质粒的拷贝数大致在约5至200之间,通常在约10至150之间。含有高拷贝数质粒的宿主宜含有至少约10个质粒,更佳的含有至少约20个质粒。根据载体以及外源蛋白对宿主的影响,可以选择高拷贝数或低拷贝数的载体。例如参见Brake等人,同上。
另外,表达构建物可以和一个整合载体一起整合入酵母基因组中。整合载体通常含有至少一个序列与酵母染色体同源,从而允许该载体整合,最好含有两个同源序列侧接该表达构建物。整合看来是载体和酵母染色体中同源DNA之间重组的结果[Orr-Weaver等人(1983)Methods in Enzymol.101228-245]。通过选择合适的同源序列插入载体中,可将整合载体导入酵母中某一特定的基因座。见Orr-Weaver等人,同上。可以整合入一个或多个表达构建物,这可能会影响重组蛋白产生的水平[Rine等人(1983)Proc.Natl.Acad.Sci.USA 806750]。载体中的染色体序列可以载体中的单个片段形式存在(从而导致整个载体的整合),或是与染色体中的相邻片段同源的两个片段,这两个片段在载体中侧接在表达构建物两侧,从而可导致仅表达构建物的稳定性整合。
通常,染色体外构建物以及整合的表达可建物均含有可选择的标记,以便选择已经转化的酵母菌株。可选择标记可包括能在酵母宿主中表达的生物合成基因(如ADE2、HIS4、LEU2、TRP1和ALG7以及G418抗性基因),这些基因分别赋予酵母细胞对衣霉素以及G418的抗性。另外,合适的可选择标记还可能为酵母在毒性化合物(如金属)存在下提供生长能力。例如,CUP1的存在使酵母能在铜离子存在下生长[Butt等人,(1987)Microbiol,Rev.51351]。
另外,上述某些组件可以一起放在转化载体中。转化载体通常包含一个可选择标记,如上所述,该载体以复制子形式维持或发展成一个整合载体。
已经开发出了用于转化入许多酵母中的表达和转化载体(无论是染色体外复制子还是整合载体)。例如,已经开发出用于下列酵母菌的表达载体和将外源DNA导入酵母宿主的方法白色念珠菌[Kurtz,等人,(1986)Mol.Cell.Biol.6142],麦芽糖念珠菌[Kunze,等人,(1985)J.Basic Microbiol.25141],多形汉逊酵母[Gleeson,等人,(1986)J.Gen.Microbiol.1323459;Roggenkamp等人,(1986)Mol.Gen.Genet.202302],脆壁克鲁维酵母[Das,等人,(1984)J.Bacteriol.1581165],乳酸克鲁维酵母[DeLouvencourt等人,(1983)J.Bacteriol.154737;Van den Berg等人,(1990)Bio/Technology 8135],季也蒙毕赤酵母[Kunze等人,(1985)J.Basic Microbiol.25141],巴斯德毕赤酵母[Cregg,等人,(1985)Mol.Cell.Biol.53376;美国专利No.4,837,148和4,929,555],酿酒酵母[Hinnen等人,(1978)Proc.Natl.Acad.Sci.USA751929;Ito等人,(1983)J.Bacteriol.153163],栗酒裂植酵母[Beach和Nurse(1981)Nature 300706],以及Yarrowia lipolytica[Davidow,等人,(1985)Curr.Genet.10380471 Gaillardin,等人,(1985)Curr.Genet.1049]。
将外源DNA导入酵母宿主的方法是本领域熟知的,通常包括用碱阳离子处理转化原生质球或完整酵母细胞。转化程序通常因待转化的酵母种类而不同。例如参见,[Kurtz等人,(1986)Mol.Cell.Biol.6142;Kunze等人,(1985)J.Basic Microbiol.25141;念珠菌];[Gleeson等人,(1986)J.Gen.Microbiol.1323459;Roggenkamp等人,(1986)Mol.Gen.Genet.202302;汉逊酵母];[Das等人,(1984)J.Bacteriol.1581165;DeLouvencourt等人,(1983)J.Bacteriol.1541165;Van den Berg等人,(1990)Bio/Technology 8135;克鲁维酵母];[Cregg等人,(1985)Mol.Cell.Biol.53376;Kunze等人,(1985)J.Basic Microbiol.25141;美国专利No.4,837,148和4,929,555;毕赤酵母];[Hinnen等人,(1978)Proc.Natl.Acad.Sci.USA 75;1929;Ito等人,(1983)J.Bacteriol.153163酿酒酵母];[Beach和Nurse(1981)Nature 300706;裂殖酵母];[Davidow等人,(1985)Curr.Genet.1039;Gaillardin等人,(1985)Curr.Genet.1049;Yarrowia]。
抗体本文所用的术语“抗体”指由至少一个抗体结合位点组成的一个或一组多肽。“抗体结合位点”是一个三维结合空间,其内表面形状和电荷分布与抗原表位的特征互补,从而使抗体与抗原结合。“抗体”例如包括,脊椎动物抗体、杂合抗体、嵌合抗体、人源化抗体、经修饰的抗体、单价抗体、Fab蛋白以及单结构域抗体。
针对本发明蛋白的抗体可用于亲和层析、免疫试验以及区别/鉴定奈瑟球菌蛋白。
针对本发明蛋白的多克隆和单克隆抗体可用常规方法制得。通常,首先用蛋白来免疫合适的动物,较佳的是小鼠、大鼠、家兔或山羊。由于可获得的血清体积多,能获得标记的抗家兔和抗山羊抗体,因此对于制备多克隆抗血清来说,家兔和山羊是较佳的。免疫通常这样进行将蛋白以盐水(较佳的以佐剂如Freund氏完全佐剂)混合或乳化,然后肠胃外(通常是皮下或肌内)注射该混合物或乳剂。每次注射50-200微克的剂量就足够了。2-6周后用盐水(较佳的是用Freund氏不完全佐剂)配的蛋白质注射一次或多次以强化免疫。另外可以用本领域已知的方法进行体外免疫来产生抗体,从本发明的目的来看,认为其与体内免疫等效。将免疫后的动物血液抽取到玻璃或塑料容器中,25℃培育该血液1小时,然后4℃培育2-18小时,获得多克隆抗血清。离心(例如1000g 10分钟)回收血清。家兔每次取血可获得约20-50毫升。
用Kohler和Milstein的标准方法[Nature(1975)256495-96]或其改进方法制得单克隆抗体。通常,如上所述对小鼠或大鼠免疫。然而,并非是对动物取血然后抽提血清,而是取出脾脏(以及任选地取出几个大的淋巴结),将其分离成单细胞。如果需要,可将细胞悬液(在除去非特异性粘附的细胞后)加入包被了蛋白质抗原的板或孔中,对脾细胞进行筛选。表达抗原特异性的膜结合免疫球蛋白的B细胞结合到板上,不象悬液其它物质那样被洗去。然后使所得B细胞或所有解离的脾细胞与骨髓瘤细胞融合形成杂交瘤,培养在选择性培养基(如次黄嘌呤、氨基蝶呤、胸苷培养基,“HAT”)中。通过有限稀释接种所得杂交瘤,并测定特异性结合免疫抗原(且不结合无关抗原)的抗体的产生。然后,体外(例如在组织培养瓶或中空纤维反应器中)或体内(如小鼠腹水中)培养所选的分泌单克隆抗体的杂交瘤。
如果需要,抗体(无论是多克隆还是单克隆抗体)可用常规技术来标记。合适的标记包括荧光团、发色团、放射活性原子(具体是32P和125I)、密电子试剂、酶、以及具有特异性结合配偶的配体。酶通常靠其活性来检测。例如,辣根过氧化物酶通常是检测其将3,3′,5,5′-四甲基联苯胺(TMB)转变成蓝色的能力,可用分光光度计定量测定。“特异性结合配偶”指能以高特异性结合配体分子的蛋白质,例如抗原以及对其有特异性的单克隆抗体。其它特异性结合配偶包括生物素和亲和素或链亲和素,IgG和蛋白A,以及本领域已知的许多受体-配体对。应理解,上述内容并非要将各种标记分成不同的类,因为同一标记可在几种不同的模型中起作用。例如,125I可作为放射活性标记,或作为密电子试剂。HRP可作为酶或单抗的抗原。另外,一种物质可以和各种标记组合以获得所需的效果。例如,在实施本发明中,单抗和亲和素也需要标记,因此,可以用生物素标记单抗,并用标记了125I的亲和素检测其存在,或用标记HRP的抗生物素单抗检测其存在。其它替换和可能性对于本领域普通技术人员来说是显而易见的,所以应认作等价物属于本发明的范围。
药物组合物药物组合物可包含本发明的多肽、抗体或核酸。该药物组合物将包含治疗有效量的本发明的多肽、抗体或多核苷酸。
本文所用的术语“治疗有效量”指治疗剂治疗、缓解或预防目标疾病或状况的量,或是表现出可检测的治疗或预防效果的量。该效果例如可通过化学标记或抗原水平来检测。治疗效果也包括生理性症状的减少,例如导致体温降低。对于某一对象的精确有效量取决于该对象的体型和健康状况、病症的性质和程度、以及选择给予的治疗剂和/或治疗剂的组合。因此,预先指定准确的有效量是没用的。然而,对于某给定的状况而言,可以用常规实验来确定该有效量,临床医师是能够判断出来的。
为了本发明的目的,有效的剂量为给予个体约0.01毫克/千克至50毫克/千克或0.05毫克/千克至10毫克/千克的DNA构建物。
药物组合物还可含有药学上可接受的载体。术语“药学上可接受的载体”指用于治疗剂(例如抗体、多肽、基因或其它治疗剂)给药的载体。该术语指这样一些药剂载体它们本身不诱导产生对接受该组合物的个体有害的抗体,且给药后没有过分的毒性。合适的载体可能是大的、代谢缓慢的大分子,如蛋白质、多糖、聚乳酸(polylactic acid)、聚乙醇酸、氨基酸聚合物、氨基酸共聚物以及无活性的病毒颗粒。这些载体是本领域普通技术人员所熟知的。
本文可用的药学上可接受的盐例如有无机酸盐,如盐酸盐、氢溴酸盐、磷酸盐、硫酸盐等;以及有机酸盐,如乙酸盐、丙酸盐、丙二酸盐、苯甲酸盐等。在Remington′sPharmaceutical Sciences(Mack Pub.Co.,N.J.1991)中可找到关于药学上可接受的赋形剂的充分讨论。
治疗性组合物中药学上可接受的载体可含有液体,如水、盐水、甘油和乙醇。另外,这些载体中还可能存在辅助性的物质,如润湿剂或乳化剂、pH缓冲物质等。通常,可将治疗性组合物制成可注射剂,例如液体溶液或悬液;还可制成在注射前适合配入溶液或悬液中、液体载体的固体形式。脂质体也包括在药学上可接受的载体的定义中。
输药方法一旦配成本发明的组合物,可将其直接给予对象。待治疗的对象可以是动物;尤其可以治疗人对象。
直接输送该组合物通常可通过皮下、腹膜内、静脉内或肌内注射或输送至组织间隙来实现。组合物也可输送至病灶区。其它给药方式包括口服和肺给药、栓剂和透皮或经皮肤施用(参见例如WO98/20734)、用针、基因枪或手持喷雾器(hypospray)。治疗剂量方案可以是单剂方案或多剂方案。
疫苗本发明的疫苗可以是预防性的(即预防感染)或治疗性的(即在感染后治疗疾病)。
这些疫苗包含免疫性抗原或免疫原、免疫原性多肽、蛋白或蛋白片段、或核酸,通常与“药学上可接受的载体”组合,这些载体包括本身不诱导产生对接受该组合物的个体有害的抗体的任何载体。合适的载体通常是大的、代谢缓慢的大分子,如蛋白质、多糖、聚乳酸、聚乙醇酸、氨基酸聚合物、氨基酸共聚物、脂质凝集物(如油滴或脂质体)以及无活性的病毒颗粒。这些载体是本领域普通技术人员所熟知的。另外,这些载体可起免疫刺激剂(“佐剂”)作用。另外,抗原或免疫原可以和细菌类毒素(如白喉、破伤风、霍乱、幽门螺杆菌等病原体的类毒素)偶联。
增强组合物效果的较佳的佐剂包括但不局限于(1)铝盐(alum),如氢氧化铝、磷酸铝、硫酸铝等;(2)水包油型乳剂配方(有或没有其它特异性的免疫刺激剂,如胞壁酰肽(见下文)或细菌细胞壁成分),例如,(a)MF59(WO90/14837;第10章疫苗设计亚基和佐剂方法,Powell& Newman编,Plenum Press,1995),其含有5%鲨烯、0.5%吐温80和0.5%Span 85(任选地含有不同量的MTP-PE(见下文),虽然并不需要),用微量流化器(如110Y型微量流化器(Microfluidics,Newton,MA))制成亚微米级颗粒;(b)SAF,其含有10%鲨烯、0.4%吐温80、5%普卢兰尼克(pluronic)嵌段聚合物L121以及thr-MDP(见下文),微量流化成亚微米级乳剂或涡流振荡产生粒径较大的乳剂,和(c)Ribi
查看更多专利详情