早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

后化学-机械平面化(cmp)清洗组合物制作方法

  • 专利名称
    后化学-机械平面化(cmp)清洗组合物制作方法
  • 发明者
    沙利亚·内格西尼, 杰夫·巴恩斯, 徐定颖
  • 公开日
    2003年7月30日
  • 申请日期
    2001年6月6日
  • 优先权日
    2000年6月6日
  • 申请人
    Esc公司
  • 文档编号
    C11D3/30GK1433567SQ01810723
  • 关键字
  • 权利要求
    1.一种用于清洗微电子基板的清洗溶液,该清洗溶液包括0.05-12.4wt%的选自氢氧化四烷基铵的氢氧化季铵,其中的烷基含有C1-C10原子中的一种或C1-C10原子中的组合;0.2-27.8wt%的选自一乙醇胺、氨基乙基乙醇胺、N-甲氨基乙醇、氨基乙氧基乙醇、二乙醇胺、三乙醇胺、C2-C5链烷醇胺及其混合物的极性有机胺;有效量的选自抗坏血酸(维生素C)、L(+)-抗坏血酸、异抗坏血酸、抗坏血酸衍生物、苯并三唑、柠檬酸、乙二胺四乙酸(EDTA)及其混合物的腐蚀抑制剂;和余量的水;其中溶液的碱度大于0.073毫克当量碱/克溶液2.一种用于清洗含铜微电子基板的清洗溶液,该清洗溶液包括0.5-12.4wt%的氢氧化四甲铵;0.2-27.8wt%的一乙醇胺;0.2-10.9wt%的抗坏血酸和余量的去离子水;其中溶液的碱度大于0.073毫克当量碱/克溶液3.根据权利要求2的清洗溶液,其中该溶液的碱度大于约0.1毫克当量碱/克溶液4.根据权利要求1的清洗溶液,其中所述腐蚀抑制剂选自抗坏血酸、L-抗坏血酸、异抗坏血酸和抗坏血酸衍生物5.一种用于CMP清洗的清洗溶液,其基本上由0.05wt%-1.25wt%的氢氧化四甲铵、0.2wt%-2.25wt%的一乙醇胺、有效量的抗坏血酸和余量的水组成6.一种通孔清洗溶液,其基本上由7.5wt%-12.4wt%的氢氧化四甲铵、12.5wt%-27.8wt%的一乙醇胺、0.2wt%-10.9wt%的抗坏血酸和余量的水组成7.一种用于微电子基板的清洗溶液,该清洗溶液基本上由1.5-12.5wt%的浓缩物和87.5-98.5wt%的去离子水组成,该浓缩物由下述物质组成3.0-12.4wt%的选自氢氧化四烷基铵的氢氧化季铵,其中的烷基含有C1-C10原子中的一种或C1-C10原子中的组合;5.0-27.8wt%的选自一乙醇胺、氨基乙基乙醇胺、N-甲氨基乙醇、氨基乙氧基乙醇、二乙醇胺、三乙醇胺、C2-C5链烷醇胺及其混合物的极性有机胺;2.0-10.9wt%的选自抗坏血酸(维生素C)、L(+)-抗坏血酸、异抗坏血酸、抗坏血酸衍生物、苯并三唑、柠檬酸、乙二胺四乙酸(EDTA)及其混合物的腐蚀抑制剂且余量为水;该溶液的碱度大于0.073毫克当量碱/克溶液8.一种用于清洗含铜微电子基板的清洗溶液,该清洗溶液基本上由1.5-12.5wt%的浓缩物和87.5-98.5wt%的去离子水组成,该浓缩物由下述物质组成5.0-12.4wt%的氢氧化四甲铵,2.0-27.8wt%的一乙醇胺,2.0-10.9wt%的抗坏血酸和余量的水,该溶液的碱度大于0.073毫克当量碱/克溶液
  • 技术领域
    总的来说,本发明涉及后化学机械抛光(post chemical-mechanicalpolishing,后CMP)清洗作业领域,更具体地说,本发明涉及微电子基板的后CMP清洗溶液
  • 背景技术
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:后化学-机械平面化(cmp)清洗组合物的制作方法目前制造半导体器件的方法是一个复杂的多步骤过程。化学-机械平面化(CMP)法现在是大多数先进的半导体作业中的公知技术,用来在生产几何尺寸小于0.35微米的器件时用于将各种基板平面化。CMP法包括在受控的化学、压力和温度条件下对着润湿的抛光表面夹持和旋转半导体材料的薄平基板。用含抛光剂如氧化铝(alumina)或二氧化硅(silica)的化学浆液作为磨料。化学浆液中还含有选择用于在加工过程中蚀刻基板各个表面的化学物质。在抛光过程中将机械和化学去除物质的方法相结合能够达到将表面超级平面化的作用。但是,CMP法在半导体基板表面上留下有杂质(contamination)。这种杂质由可能由氧化铝或二氧化硅组成的来自抛光浆液的磨料颗粒及加入抛光浆液的反应性化学物质构成。杂质层可能还包括抛光浆液和抛光表面的反应产物。为了避免器件可靠性降低,且为了避免引入能够使产率降低的缺陷,必须在对半导体基板进行后续加工前去除这些杂质。人们因此而开发了用于清洗CMP残层的基板表面的后CMP清洗溶液。传统上用基于氢氧化铵的碱性溶液进行后CMP清洗。目前大多数CMP用在含铝、钨、钽和氧化物的表面上。但是,在制造半导体时,铜日益成为生产互联的材料。铜正在取代铝作为制造这些器件的金属。传统的后CMP法不足以清洗含铜表面。铜、氧化铜和浆液颗粒是进行CMP工艺后存在于铜表面上的杂质。铜表面能够快速分散在硅和二氧化硅中。因此必须去除所有晶片表面上的铜以防止器件失效。传统上对氧化铝和二氧化硅基CMP工艺有效的后CMP清洗溶液对含铜表面无效。铜易于受到这些清洗溶液的破坏。另外,现在的后CMP清洗溶液的清洗效率也不能接受。Nam的美国专利5863344中公开了一种用于半导体器件的清洗溶液,该溶液含有氢氧化四甲铵、乙酸和水。该溶液中优选含有的乙酸与氢氧化四甲铵的体积比是约1至约50。Ward的美国专利5597420中公开了一种用于清洗基板中有机和无机化合物的含水汽提组合物,这些有机和无机化合物不会腐蚀或溶解基板中的金属线路。所公开的含水组合物优选含有70-95wt%的一乙醇胺和约5wt%的腐蚀抑制剂如儿茶酚、连苯三酚或五倍子酸。
Ward的美国专利5709756中公开了一种清洗组合物,该组合物含有约25-48wt%的羟胺、1-20wt%的氟化铵和水。该溶液的pH大于8。该溶液还可含有腐蚀抑制剂如五倍子酸、儿茶酚或连苯三酚。
Hardi等人的美国专利5466389中公开一种用于清洗微电子基板的含水碱性清洗溶液。该清洗溶液含有无金属离子的碱性组分如氢氧化季铵(最高含量为25wt%)、非离子表面活性剂(最高含量为5wt%)和pH调节组分如乙酸,pH调节组分用于将pH控制在8-10范围内。
Schwartzkopf等人的欧洲专利0647884A1中公开了含有用于降低金属腐蚀的还原剂的光致抗蚀剂剥离剂。在用于控制金属腐蚀的含碱组分中,该专利使用了抗坏血酸、五倍子酸、连苯三酚。
授权于Satoh等人的美国专利5143648中公开了作为抗氧化剂的新型抗坏血酸衍生物,此处引入该专利作为参考。
Ward的美国专利5563119中公开了一种含水汽提组合物,该组合物由链烷醇胺、氢氧化四烷基铵和腐蚀抑制剂组成,该组合物用于清洗镀铝无机基板中的有机残余物。
现在需要一种用于含铜表面的后CMP清洗组合物。这样的后CMP清洗组合物需要基本上能够有效地将目标表面中实质上所有的颗粒去除并且能够防止对含铜基板的腐蚀。这样的后CMP清洗组合物还需要能够避免对后CMP工艺中使用的工艺设备的破坏。这样的后CMP清洗组合物还应当是经济的,能够在很宽的温度范围内有效作业。这样的后CMP清洗组合物还应当适用于利用氧化铝或二氧化硅基浆液的CMP工艺后的清洗作业。
发明概述本发明是一种用于清洗微电子基板的含水清洗溶液,该溶液包括选自氢氧化四烷基铵的氢氧化季铵,其中的烷基含有C1-C10原子中的一种或C1-C10原子中的组合;选自一乙醇胺、氨基乙基乙醇胺、N-甲氨基乙醇、氨基乙氧基乙醇、二乙醇胺、三乙醇胺、C2-C5链烷醇胺及其混合物的有机胺;选自抗坏血酸、L(+)-抗坏血酸、异抗坏血酸、抗坏血酸衍生物、柠檬酸、乙二胺四乙酸(EDTA)、苯并三唑及其混合物的腐蚀抑制剂。该溶液的碱度大于0.073毫克当量碱/克溶液。
因此,本发明的一个方面是一种用于清洗微电子基板的清洗溶液,该清洗溶液包括0.05-12.4wt%的选自氢氧化四烷基铵的氢氧化季铵,其中的烷基含有C1-C10原子中的一种或C1-C10原子中的组合;0.2-27.8wt%的选自一乙醇胺、氨基乙基乙醇胺、N-甲氨基乙醇、氨基乙氧基乙醇、二乙醇胺、三乙醇胺、C2-C5链烷醇胺及其混合物的极性有机胺;有效量的选自抗坏血酸(维生素C)、L(+)-抗坏血酸、异抗坏血酸、抗坏血酸衍生物、苯并三唑、柠檬酸、乙二胺四乙酸(EDTA)及其混合物的腐蚀抑制剂;和余量的水。该溶液的碱度大于0.073毫克当量碱/克溶液。
本发明的一个方面是一种用于清洗微电子基板的清洗溶液,该溶液包括a)氢氧化四甲铵,b)一乙醇胺,c)抗坏血酸和去离子水。该溶液的碱度大于0.073毫克当量碱/克溶液。优选地是,清洗溶液中氢氧化四甲铵的量是约0.15wt%至约1.25wt%,清洗溶液中一乙醇胺的量是约0.2wt%至约2.25wt%,清洗溶液中抗坏血酸的量是约0.10wt%至约0.9wt%。
本发明的另一方面是一种用于清洗微电子基板的清洗溶液,该清洗溶液基本上由1.5-12.5wt%的浓缩物和87.5-98.5wt%的去离子水组成,该浓缩物由下述物质组成3.0-12.4wt%的选自氢氧化四烷基铵的氢氧化季铵,其中的烷基含有C1-C10原子中的一种或C1-C10原子中的组合;5.0-27.8wt%的选自一乙醇胺、氨基乙基乙醇胺、N-甲氨基乙醇、氨基乙氧基乙醇、二乙醇胺、三乙醇胺、C2-C5链烷醇胺及其混合物的极性有机胺;2.0-10.9wt%的选自抗坏血酸(维生素C)、L(+)-抗坏血酸、异抗坏血酸、抗坏血酸衍生物、苯并三唑、柠檬酸、乙二胺四乙酸(EDTA)及其混合物的腐蚀抑制剂且余量为水。该溶液的碱度大于0.073毫克当量碱/克溶液。
本发明的另一方面是一种制备用于清洗微电子基板的清洗溶液用的浓缩组合物。该浓缩组合物包括约3.0wt%至约12.4wt%的氢氧化四甲铵,约5wt%至约27.8wt%的一乙醇胺,约2.0wt%至约10.4wt%的抗坏血酸和余量的去离子水。清洗溶液的制备方法是将至少约1.5wt%至接近100wt%的浓缩物与去离子水混合。也可以不再和水混合而直接使用这种浓缩物。
附图简述

图1是在基板上部分抛光的电化学沉积铜表面的原子力显微图(AFM),其放大的扫描范围为10μm×10μm。
图2是用本发明的溶液处理的图1所示晶片的原子力显微图(AFM),其放大的扫描范围为10μm×10μm。
图3是用本发明的另一种组合物清洗的图1所示铜样品的原子力显微图(AFM),其放大的扫描范围为10μm×10μm。
图4是用本发明的不同组合物处理的图1所示铜样品的原子力显微图(AFM),其放大的扫描范围为10μm×10μm。
图5是用本发明的组合物处理之前的通孔的原子力显微图(AFM),其放大的扫描范围为10μm×10μm。
图6是用本发明的组合物处理后的图5所示通孔的原子力显微图(AFM),其放大的扫描范围为10μm×10μm。
图7是表示用本发明的组合物清洗前后的晶片上颗粒数的数据图。
图8是用本发明的溶液清洗前后的晶片上颗粒数的扫描图。
发明详述本发明提供一种用于清洗进行CMP工艺后的含铜微电子基板的清洗溶液。一般将CMP工艺后的含铜基板的清洗称为″后CMP铜清洗(post CMPcopper clean)″。在本文中应当将″含铜微电子基板″理解为用于生产微电子器件、集成电路或计算机芯片的基板表面,其中基板含有含铜组分。含铜组分可以包括如主要是铜或铜合金的金属互联(metallic interconnect)。应当理解的是,微电子器件表面还可以由半导体材料如作为铜扩散阻挡层金属的TiN、Ta、TiW及二氧化硅构成。含铜微电子基板一般含有约1-100%的铜,其中包括铜互联。
在制造微电子基板如半导体晶片的过程中,本发明的清洗溶液可用于任何清洗作业。最值得注意的是,这样的清洗适用领域包括后通孔成形(post-Via formation)和后CMP工艺。制造传统的半导体基片时有许多需要平面化的步骤,然后去除平面化工艺产生的残余材料。
本发明的清洗溶液包括氢氧化季铵、有机胺、腐蚀抑制剂和余量的水。氢氧化季铵选自氢氧化四烷基铵(TMAH),其中的烷基含有C1-C10原子中的一种或C1-C10原子中的组合。氢氧化季铵在清洗溶液中的存在量是约0.05wt%至约12.4wt%。
极性有机胺选自一乙醇胺(MEA)、氨基乙基乙醇胺、N-甲氨基乙醇、氨基乙氧基乙醇、二乙醇胺、三乙醇胺、C2-C5链烷醇胺及其混合物。极性有机胺在清洗溶液中的存在量是约0.2wt%至约27.8wt%。
腐蚀抑制剂选自抗坏血酸、L(+)-抗坏血酸、异抗坏血酸、抗坏血酸衍生物、柠檬酸、苯并三唑及其混合物。腐蚀抑制剂在清洗溶液中的存在量是约0.2wt%至约10.9wt%。希望达到最佳腐蚀量的同时有效地清洗表面,使氧化铜及其它杂质能够从表面上去除。因此,为了达到最佳清洗效果,该工艺通常使晶片表面产生少量的铜损失,但是能够保持晶片的电性能。
本发明的清洗溶液的碱度大于0.073毫克当量碱/克溶液。在本发明的一个实施方案中提供的一种浓缩组合物可以稀释后用作清洗溶液。本发明的浓缩组合物或″浓缩物″的优点是允许用户如CMP工艺工程师将浓缩物稀释至所需强度和碱度。产品的浓缩物具有更长的保存期限,更易于运输和储存。
抗坏血酸及其衍生物在食品和药品中广泛地用作抗氧化剂。人们还发现它们对于存在于含水或溶剂环境中的金属或金属合金来说是合适的腐蚀抑制剂。本发明的抗坏血酸及其它组分易于商购。
本发明的清洗溶液的一个重要特点是溶液中存在有少量非水组分(不是水的组分)。这有很大的经济利益,因为可以更经济地配制有效的清洗溶液,这一点很重要,因为后CMP清洗溶液的用量非常大。
本发明的浓缩液优选包括约3.0-12.4wt%的TMAH,约5.0wt%至约27.8wt%的MEA,约2.0wt%至约10.4wt%的抗坏血酸和余量的水(优选去离子水)。
另外,本发明的浓缩物还可含有进一步防止在晶片表面上沉积不需要的金属杂质的螯合剂。在该制剂中还可引入用于Zn、Cu、Ni、Fe等的公知金属络合剂。大家还都知道,在许多情况下腐蚀抑制剂的金属防护能力与有机络合物形成剂的络合物形成性能相关。
本发明的浓缩物优选稀释后用于后CMP清洗,方法是加入去离子水,直到浓缩物是制备的清洗溶液的约1.5wt%至约12.5wt%。本发明的清洗溶液可以在从环境温度至约70℃的温度下清洗微电子基板。一般大家都能理解清洗效果随温度升高而改进。
如上所述,本发明的清洗溶液的碱度大于0.073毫克当量碱/克溶液。更优选使本发明的清洗溶液的碱度保持为大于约0.091毫克当量碱/克溶液。
本发明的清洗溶液达到了后CMP应用中普遍接受的工业清洗性能标准。一般的工业清洗标准是对于200mm晶片来说基板晶片上粒度大于0.2微米的颗粒数小于20,而5mm的边界排除。
本发明的清洗溶液在配制时不需要表面活性剂,但是并不排除表面活性剂在具体领域中的应用。
使用本发明的清洗溶液时,可以使用许多传统的清洗工具,这些清洗工具包括Verteq单晶片megasonic Goldfinger,OnTrak系统DDS(双面擦洗器)、SEZ单晶片喷雾漂洗和Megasonic批量湿长凳系统。
本发明的清洗溶液可成功地应用在含铜、钨和/或二氧化硅的表面上。
如上所述,本发明的清洗溶液的一种应用方法是通孔清洗。通孔是蚀刻在微电子基板中的孔,这些孔是连接金属层的通道。用气相蚀刻剂蚀刻基板表面产生通孔。基板一般是介电材料如氟化硅玻璃(FSG)。蚀刻工艺完成后必须去除残留在基板表面和通孔壁上的残余物。残余物通常称为″侧壁聚合物″,因为人们还发现这些残余物处于通孔的垂直壁上。蚀刻残余物还可位于通孔底部、金属顶部。本发明的清洗溶液不会和暴露的介电材料发生反应也不会对暴露的介电材料产生影响。
下面的实施例仅仅是为了例示本发明,而不是限定本发明。
实施例1进行实验以评价不同组成的后CMP清洗溶液的相对清洗性能。制备清洗溶液的方法是将去离子水、TMAH、抗坏血酸及三种胺化合物(MEA、羟胺或N-一乙醇胺)中的一种混合在一起。制备的清洗溶液的组成示于表1。为了达到对比的目的,另外制备两种清洗溶液溶液10是在去离子水中有1.7wt%的NH4OH,溶液11是1∶2∶10的NH4OH∶H2O2∶H2O。
用预清洗的Fisher 12-550-10显微载玻片进行″浸渍实验″。在下述步骤中,所有的浸渍过程都进行5秒钟,并且都用塑料夹钳处理。样品载片首先浸渍在CMP氧化物浆液(Ultraplane P-1500)中,然后浸渍在250ml去离子水中,然后浸渍在W-CMP浆液(Ultraplane-MC W CMP碱与去离子水的1∶1稀释液)中,然后将每一个载片浸渍在250ml去离子水中,然后浸渍在清洗溶液中。然后将每一个载片浸渍在100ml去离子水中,然后浸渍在另一个分开的去离子水浴中。将载片悬挂起来,在环境条件下晾干。每一次实验后,所有的去离子水浴都要置换成新的。
以残留的CMP浆液为依据,从视觉上评价干燥载片,评价标准是观察到的载片上的浑浊度。将这些干燥载片进行对比,然后从最好(1)到最差(11)进行分级。
结果示于表1。
这些结果显示本发明的优选实施方案性能最好(即,溶液1和2)。本发明的所有溶液都比现有技术的清洗溶液性能(溶液10和11)好。
实施例2
评价清洗溶液(A-G)对铜的腐蚀性能。溶液A由0.9wt%的MEA、0.5wt%的TMAH、0.35wt%的(L)-抗坏血酸和余量的去离子水组成。溶液B由0.9wt%的MEA、0.5wt%的TMAH、0.18wt%的(L)-抗坏血酸和余量的去离子水组成。溶液C由0.9wt%的MEA和余量的水组成。溶液D由0.9wt%的MEA、0.5wt%的TMAH、0.35wt%的五倍子酸和余量的水组成。溶液E由0.9wt%的MEA、0.5wt%的TMAH、0.18wt%的五倍子酸、0.18wt%的苯并三唑和余量的水组成。溶液F是缓冲HF溶液。溶液G是1.7wt%的NH4OH水溶液。从整片的电化学沉积(ECD)铜晶片(部分抛光)上得到均匀长度和宽度的铜片,然后在环境条件下将铜片置于200ml搅拌的样品清洗溶液中2分钟。然后将铜晶片从清洗溶液中取出,用去离子水漂洗,然后用氮气干燥。目测铜晶片的颜色变化和失去的光泽。二者都是铜受到腐蚀的证明。对这些处理的铜晶片进行原子力显微测试(AFM),测试其表面腐蚀情况。
腐蚀结果示于表II。
*RMS=AFM测定的均方根粗糙度。
表II中的数据显示本发明的优选实施方案(溶液A)的铜腐蚀防护性能非常好。溶液A和B的不同在于腐蚀抑制剂的浓度不同。其它所有溶液与该优选实施方案相比都能造成大量的铜表面腐蚀。溶液G只是去除了表面上的氧化铜层,因此发生轻度糙化。
图1-4示出用AFM扫描的实施例及RMS粗糙度数据,其中,图1是未处理的电化学沉积(ECD)铜晶片,图2是浸渍在溶液A中的同一个ECD铜晶片,图3是浸渍在溶液B中的ECD铜晶片,图4是浸渍在由0.9wt%的MEA、0.5wt%的TMAH、0.18wt%的五倍子酸和余量水组成的溶液中的ECD铜晶片。
实施例3制备一系列清洗溶液,评价含水清洗溶液中TMAH、MEA和抗坏血酸的关系。用TMAH、MEA、抗坏血酸和去离子水的各种组合制备清洗溶液,使TMAH浓度为0.0wt%-0.5wt%;MEA的浓度为0wt%-0.9wt%;抗坏血酸的浓度为0wt%-0.35wt%;溶液的余量为去离子水。制备的实验溶液示于表III。还要根据实施例2的实验步骤评价制备的清洗溶液对铜片的铜腐蚀性能。
结果示于表III。
*1=好,3=一般,5=差这些结果显示在浸渍实验中作为清洗剂性能最好的溶液(组合物G)含有TMAH、MEA和抗坏血酸。不含至少一种这些组分的溶液性能不好。这些结果说明当TMAH、MEA和抗坏血酸共存于清洗溶液中时,特别以优选量共存时,这些组分具有协同清洗效应。
实施例4图5示出在原始晶片表面上1微米大小的通孔的AFM断面分析。通孔的深度约为400nm。这些通孔的横断面测试结果清楚地说明在蚀刻后剩余有大量聚合物残余物。
制备本发明的清洗溶液,其组成为10.0wt%的TMAH、18.0wt%的MEA、7.0wt%的抗坏血酸和余量的水。在70℃下将部分蚀刻的通孔晶片浸渍在该溶液中30分钟。然后用去离子水将晶片漂洗约1分钟,然后用氮气吹干。
图6示出用上述溶液处理后的同一种1微米大小的通孔的AFM断面分析。这些通孔的横断面图显示它们的深度非常浅(平均80nm)。处理前和处理后深度的差别是因为去除了晶片表面上的光致抗蚀剂层,光致抗蚀剂层的厚度估计约为300nm。矩形的通孔底部(图6)也说明侧壁聚合物被上述溶液所除去。这些结果说明优选的实施方案是适用于通孔清洗和清扫光致抗蚀剂的组合物。
实施例5测试两种溶液在后CMP清洗中的应用。溶液I(0.45wt%的MEA、0.25wt%的TMAH、0.175wt%的五倍子酸和余量的水)和溶液II(0.45wt%的MEA、0.25wt%的TMAH、0.175wt%的抗坏血酸和余量的水)用于清洗实验,用Cobra-VcS站对浸渍在Olin Arch 10K浆液中的TEOS晶片进行清洗实验。图7-8示出用KLA-Tencor仪器测试的用溶液I和溶液II清洗的晶片中的颗粒数。本发明的优选组合物-溶液II明显具有更优越的清洗性能。
实施例6制备分别稀释至1.25、1.33、2.5和5wt%的浓缩溶液并进行评价。在两种不同恒温条件下(22℃和50℃)将部分平面化的ECD同晶片浸渍在这些搅拌溶液中30分钟。对进行这些处理前和进行这些处理后的晶片进行四探针测试,测量其表面电阻。评价这些溶液的铜蚀刻率。浓缩物A是10.0wt%的TMAH、18wt%的MEA、7.0wt%的抗坏血酸和余量的水。浓缩物B是10.0wt%的TMAH、18wt%的MEA、7.0wt%的五倍子酸和余量的水。表IV示出以埃/分钟表示的实验结果报告。
从表IV中的数据可清楚地看出浓缩组合物A的腐蚀抑制性能比浓缩组合物B的好。
实施例7用实施例6的方法制备两种浓缩溶液并分别稀释至12.5和50wt%。在恒温下(22℃)将部分平面化的ECD同晶片浸渍在这些搅拌溶液中10分钟。对进行这些处理前和进行这些处理后的晶片进行四探针测试,测量其表面电阻。表V示出以毫欧/厘米2表示的表面电阻变化的报告。
可以清楚地看出浓缩组合物A的腐蚀抑制性能比浓缩组合物B的好。浓缩组合物A还明显具有出人意料的效果,因为表面电阻有所降低。
上面已经对本发明进行了描述,但是本发明不限于本申请所述的具体实施方案,需要以专利权保护的范围设定在附加的权利要求书中。


本发明公开一种用于清洗微电子基板的清洗溶液,特别是用于后CMP或通孔成形清洗的清洗溶液。该清洗溶液包括氢氧化季铵、有机胺、腐蚀抑制剂和水。优选的清洗溶液包括氢氧化四甲铵、一乙醇胺、抗坏血酸和水,该清洗溶液的碱度大于0.073毫克当量碱/克溶液。



查看更多专利详情