早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

烧结的可溶凝胶氧化铝磨料丝制作方法

  • 专利名称
    烧结的可溶凝胶氧化铝磨料丝制作方法
  • 发明者
    查尔斯·鲁尔, 罗纳德H·范·德·默文拉尔夫·保尔, 司考德W·比罗, 托马斯E·考托林格, 理查德J·克洛克
  • 公开日
    1990年11月14日
  • 申请日期
    1990年4月28日
  • 优先权日
    1989年4月28日
  • 申请人
    诺顿公司
  • 文档编号
    C04B35/111GK1046926SQ9010425
  • 关键字
  • 权利要求
    1.一种烧结的可溶凝胶氧化铝基磨料丝,其包含尺寸不大于α微米的烧结的α氧化铝晶体,所述磨粒具有基本上均匀一致的横截面,直径不超过2mm,平均长细比至少为1.0,硬度至少为16GPa2.根据权利要求1所述的丝形磨料,其长度小于1cm3.根据权利要求2所述的磨粒,其长细比为1.5至25,直径为0.0001mm至2mm,其中所述的α氧化铝晶体的尺寸不大于1微米4.根据权利要求2所述的磨粒,其中至少80%的所述磨粒包含有尺寸不大于0.4微米的各向相等的晶体5.根据权利要求2所述的磨粒,其密度至少为理论密度的95%,并包含有1%到50%重量的氧化物,所述氧化物是从氧化锆、氧化钛、氧化镁、二氧化铪、二氧化铈、尖晶石、富铝红柱石、氧化锰、这些氧化物的初晶体及它们的混合物中选择6.根据权利要求2所述的磨粒,其中在所述的α氧化铝晶体中加入尺寸小于1微米的α氧化铝进行引晶7.根据权利要求2所述的烧结的丝形氧化铝基磨粒,其中所述的丝形氧化铝基磨料在其较长的尺寸方向是弯曲的8.根据权利要求2所述的烧结的丝形氧化铝基磨粒,其中所述的丝形氧化铝基磨料在基较长的尺寸方向是卷曲的9.根据权利要求2所述的烧结的可溶凝胶丝,其基本上不含玻璃质成份,并且断裂强度至少为8000Kg/cm210.用根据权利要求1所述的丝加强的金属或陶瓷的混合物11.一种制造含有α氧化铝晶体的烧结氧化铝基丝形物的方法,所述α氧化铝晶体尺寸大约为2微米或更小,包括以下步骤提供超微水合氧化铝颗粒的凝胶的弥散体;将所述的凝胶的弥散体做成丝形;将所述丝干燥;将所述干燥的丝焙烧至1090℃至1500℃之间的某一温度,所用时间选择为将所述丝中的氧化铝转化成陶瓷体的时间,陶瓷体的主要部分是由尺寸大约为2微米或更小的α氧化铝晶体所组成12.根据权利要求11所述的方法,其中,所述凝胶的弥散体中包含有效量的超细微的晶种颗粒,所述α氧化铝晶体尺寸为大约1微米或更小,用来促使所述水合氧化铝在焙烧时迅速转化为α氧化铝13.根据权利要求11所述的方法,其中所述的α氧化铝晶体尺寸大约为0.4微米或更小14.根据权利要求11所述的方法,其中所述的晶种颗粒是从下列氧化物组中选取的α氧化铝、α氧化铁、γ氧化铝、氧化铬、和α氧化铝、γ氧化铝、氧化铬、α氧化铁的初晶体以及它们的混合物,所述晶种颗粒加入的重量大约是0.5%至10%15.根据权利要求11所述的方法,其中所述的凝胶的弥散体的成形是由挤丝而成的16.根据权利要求11所述的方法,其中所述凝胶的弥散体的成形是由甩丝而成的
  • 技术领域
    本发明涉及烧结的可溶凝胶α氧化铝磨料丝,其用于粘接的磨料制品,例如砂轮、砂瓦,以及涂覆制品,例如砂带、研磨盘之中可溶凝胶,特别是引晶的可溶凝胶铝土磨料,自从它几年前被采用以来,已广及应用于涂覆和粘接的磨具领域之中,已证实它比其他优质磨料具有显著的优点通常这样的磨料都是由干燥和烧结水合氧化铝凝胶而制成这些凝胶也可含有某种不同量的添加剂,例如MgO,和ZrO2干燥过的材料在烧结前或烧结成不规则的块状多晶磨粒之后被压碎成所需的粒度范围然后将这些磨粒结合到粘接或涂覆的磨料制品中,例如砂轮、砂瓦,砂带成研磨盘中雷塞施(Leitheiser)等的美国专利4,314,827公开了用这样方法制造的磨粒,该方法使烧结的磨粒含有直径在5到10微米数量级上的不规则的“雪花”形αAl2O3晶体“雪花”的花枝和相邻“雪花”之间的空隙是由其他相的物质占领,例如细微结晶氧化铝氧化镁尖晶1986年12月18日授权的转让给诺顿(Norton)公司-该申请的受让人,的美国专利4,623,364公开了一种用于制造氧化铝磨粒的可溶凝胶的方法,以及具有更好特性的除涂覆物、薄膜、细丝、棒或小尺寸的部件以外的制品在该专利中,将晶种材料加入凝胶中或干燥前的凝胶初级物中,以促使水合氧化铝转化成α氧化铝这是通过对带α氧化铝介质的凝胶初级物或凝胶进行湿态振动研磨来完成的,或是通过直接加入非常细的粉末状或其他形状的晶种颗粒来完成将引晶凝胶干燥,压碎并熔烧以制成磨粒如此生产的磨粒可用于制造诸如研磨盘和砂轮这样的产品另外,为制造一定形状的部件成棒,将这些材料在焙烧前成形或通过挤压模成型在挤压情况下,成形的棒以后可切成断成适当的长度一旦凝胶形成,它可由任一方便的方法成形,例如冲压、模压或挤压,然后小心地将其干燥以产生所希望形状的无裂纹的产品如果想得到磨料材料,该凝胶也可方便地挤压扩散成任意方便的形状并被干燥干燥后,这些固态产品或材料可切成或加工成所需的形状,或者用合适的设备,例如锤式碎矿机或球磨机将其压碎或破碎成颗粒或磨粒这种引晶可溶凝胶磨料,比雷塞施(Leitheiser)型非引晶可溶凝胶材料具有坚实得多的α型Al2O3晶体结构和更高的密度如果引晶不是在最恰当的方式下进行或焙烧温度太高,或持续时间太长,虽然有可能导致产生某些较粗的晶体结构,但这种引晶可溶凝胶磨料的α型Al2O3的晶体是超细微的,并且一般是在大约0.4微米或更小的数量级上其他材料,例如Fe2O3也可作为促进转化成α型Al2O3的晶种根据经验,这样的晶种材料与Al2O3应当是同结构的,并且应当具有相似的(在15%以内)晶格参数才能很好地发挥作用为制成所需尺寸的磨粒,就必须把上述可溶胶磨料中较大的颗粒破碎,并把它筛分然而这个工艺是非常浪费的,因为它产生的磨料粒度是在很大的范围内的这些磨料不是都可以用的这使相当数量的磨粒不得不抛弃或再循环生产,或用在价值较低的场合现已发现,烧结的可溶凝胶微晶材料具有显著提高的特性,它不需要在使用前进行进一步的粉碎加工,能够直接获得性能极好的形状由于人们习惯认为可溶凝胶微晶氧化铝磨料的特性来自晶体的大小和纯度,尤其是要无杂质,这杂质存在于如铝土矿中,并导致在制成α氧化铝的温度时形成玻璃质物质,因此这种提高了的特性是特别令人惊奇的此外,由于用直接配方技术生产,从而使非直接需要的材料的生产量少得多实际上,生产的几乎所有的材料都是要求一定规格的,因此,这种加工工艺更明显地有效本发明涉及烧结的可溶凝胶α氧化铝基多晶磨料丝如果凝胶没有加晶种,磨料丝中的α氧化铝晶粒可大到2微米但加入最佳的晶种,它可以小于1微米,用最佳的处理工艺,它不大于0.4微米一般来说,可以发现,如果晶粒变小,则磨料性能显著改善晶粒尺寸大约为0.05至1微米的数量级常常是最优越的磨料能够由制备水合氧化铝可溶凝胶,把这些凝胶挤丝或甩丝,并把这些丝干燥,焙烧到不高于1500℃温度的步骤制成对最佳加工工艺来说,其包括在初始的溶胶或凝胶中加入添加剂,即加入有效量的超微晶体的晶种材料,它在挤丝和干燥后的可溶凝胶焙烧时,促进凝胶中的水合氧化铝迅速转化成非常细微的α氧化铝晶体这样的晶种材料实例可以是β氧化铝、γ氧化铝、氧化铬、α氧化铁、α氧化铝,或这些氧化物的的初晶品以及其他的象α氧化铝一样起着核的作用的细微碎屑微晶是在生长过程中从可溶凝胶中形成的,因为这样能产生细微的均匀的微晶结构,特别是在可溶凝胶中加入了晶种时这种生长过程是十分重要的,它形成了本发明的产品与那些通过烧结主要或完全由α氧化铝晶粒组成的混合物制成的产品之间的显著差异除非使用高温(其导致晶体生长),后者的产品在相邻晶粒间总是呈现出较弱的烧结结合力,所以由这样晶体组成的磨粒强度较小相反,从可溶凝胶中生长而成的并当场烧结的α氧化铝晶体,尤其是那些由引晶工艺所产生的α氧化铝能在低得多的烧结温度下焙烧保护了细微的晶体结构由于杂质在焙烧时产生玻璃质的物质,所以最好是在微晶结构中基本上除去杂质所谓的“玻璃质”物质意思是指无确定形状的不具有长分子链的非晶物质这种物质显著地削弱了所有晶粒结构,并使其变成效果较差的磨粒因此,本发明的磨粒中含有小于5%,最好小于2%重量的任何这种玻璃质混合物为便于申请和公开,本发明在此采用的术语“丝”,指的是细长的陶瓷体,每个陶瓷体沿其长度方向上横截面一般是一致的,其最大横截面尺寸不超过大约1.5mm,最好小于大约0.5mm,而且其长度大于横截面最大尺寸,最好至少是横截面最大尺寸的大约2倍本发明的磨料丝可以弯曲或扭曲,所以其长度当然不是沿直线测量的,而是沿其本体量得的一般说,磨料丝最好是由最佳水合氧化铝引晶凝胶挤压或甩出连续的丝状物,将如此获得的丝状物干燥,并将其切成或断成所需长度的丝,然后将其焙烧到不超过1500℃的温度而获得美国专利4,314,827、4,623,364以及4,797,139中描述了各种制备水合氧化铝可溶凝胶及焙烧凝胶的方法除所述专利中公开的水合氧化铝外,溶胶中还可包括其重量成分高达10~15%的添加剂,例如二氧化钛、尖晶石、富铝红柱石、二氧化锰、氧化镁、二氧化铈、氧化锆,均成粉末状或初晶品形式,或其他相容的添加剂或其初晶品所提供的这些添加剂在α氧化铝形成的温度下,不产生玻璃质物质,并且在细丝形成时,它们对凝胶的完善性及稳定性不产生有害的作用这些添加剂可改善凝胶的性能,如断裂韧性、硬度、脆性、断裂力学性能或干燥性能在最佳实施例中,溶胶或凝胶包含弥散的有效量的促进水合氧化铝烧结时转化成α氧化铝的超微细晶种材料或初晶品该晶种材料的量不应超过水合氧化铝重量的大约10%,正常情况下含量超过大约5%时就不会有什么益处了如果晶种足够细(最好每克有60m2或更多),可使用的晶种的量大约是0.5%到10%,最好是1%到5%过多的添加剂往往会影响可溶凝胶的稳定性,并使其成丝困难另外,由于预先形成的α氧化铝颗粒需要高得多的温度才能烧结,故在烧结过程中形成的晶体间键的强度大大降低当然,这样高的温度往往还会导致晶体生长以及其他的不良后果固态微晶晶种材料的实例是β氧化铝、α氧化铁、α氧化铝、γ氧化铝、氧化铬、和其他能提供起着α氧化铝的核的作用的细微碎屑,用α氧化铝最好晶种也可以初晶品的形式加入,如硝酸铁溶液一般来说,晶种材料应与α氧化铝是同结构的,并且具有相似的晶格尺寸(15%以内),在α氧化铝发生转化的温度下(大约为1000℃~1100℃)在干燥过的凝胶中表现其作用细丝可具有任意一种方便的横截面,如圆形、方形、三角形、星形在大多数应用中,圆形横截面最好但某些其他的应用场合,用其他的形状,例如正方形或三角形,可能更好通过各种方法,例如挤压或甩出,从凝胶中可制成湿磨料丝对直径为0.25mm至1.5mm的湿丝来说,挤丝法是最有用的经干燥和焙烧之后,这些湿丝的直径分别大致等于粒度为100至24的磨料所用的筛网孔径对直径小于大约100微米的需要焙烧的丝来说,挤丝是最有效的根据本发明,挤丝可制成细到0.1微米(0.0001mm)的焙烧的丝湿丝在焙烧时要收缩,例如在60%固体含量时,其丝的直径从挤丝时的直径收缩大约40%最适合挤丝的凝胶应有含量大约30%至大约68%的固体,而最好是大约45%至64%最佳的固体含量直接随所挤出丝的直径变化对焙烧后直径大致等于粒度为50的压碎的磨粒(大约为0.28mm)的筛网孔的孔径的细丝来说,固体含量大约为60%是较好的如上所述,通过一般地往凝胶中加入固态材料试图获得太高的固体含量,对凝胶的稳定性存在严重的危害通常挤出的丝只有很低的湿强度,显且经常不能保持丝的形状,除非其直径大于大约2mm时根据本发明的甩丝是将一定量的的凝胶置于一圆盘上,然后该圆盘转将湿丝甩出甩出的湿丝在空气中几乎立刻干燥另外,也可将凝胶放置在周围钻有孔或缝的离心式碗状物中,该碗状物,例如以每分钟5000转的速度旋转,产生丝在这个过程中,这些丝可拉至难以想象的“湿直径”也可用其他公知的甩丝方法来生产湿丝对于甩丝,最有用的固体含量大约是20%至45%,最好是大约35%至40%如果丝是由甩丝形成的,需要在形成凝胶的溶液中加入大约1%至5%的非玻璃质的甩丝辅助剂,例如聚氧化乙烯,以在成丝时给溶胶增加所需的粘弹性最佳的甩丝辅助剂量与凝胶中的固体含量成反向变化甩丝辅助剂在煅烧或焙烧过程中烧掉了因为所需加入的量非常少(对挤丝一般不加),故它基本不会影响焙烧成的丝的性能通过具有所需挤丝横截形状的挤丝模,可将凝胶挤压成各种所需形状的凝胶丝如果凝胶丝的横截面相当大或由含有大量的水的凝胶制成,则在将其加热到高于100℃以前,必须或最好在100℃以下干燥24至72小时如果凝胶丝横截面相对细时或者含有非常高的固体含量,则没有必要进行干燥处理当然,本发明的磨料丝能够进行干燥处理,并焙烧成基本连续的丝是所希望的这些丝可用作一种间架中的加强元件例如金属或塑料间架,可使它们的韧性非常优异最初形成的连续的丝,最好断成或切成为预期的磨削使用所需的最大尺寸的长度一般说,把连续的丝转变成分散体或改变其形状所需的任何分离或成形工序最好是在凝胶阶段或其干燥阶段完成因为这时进行,比试图在根据本发明最后焙烧之后制成的硬得多而且坚固得多的丝时进行省力、成本低得多因此,当连续的丝从挤丝模中产生时,可用任意对本技术领域人员来说都是公知的适当的装置,例如装在靠近挤丝模附近表面上的金属线回转切割器,将其切到所需之长度另外,干燥过的丝可被断裂或稍微地压碎,然后分成所需不同的长度范围当凝胶丝已经象所需要的那样成形,并被切割或压碎,如果需要的话并被干燥之后,由被控制的焙烧过程将它们转变成最终形式的丝焙烧应足以使凝胶丝中的全部氧化铝成分基本上转化成晶体型α氧化铝,但焙烧温度和时间均不宜过度因为过度焙烧促使出现不希望的粒度和晶粒长大,从而导致所生产的磨料产品在使用过程中效果降低一般来说,最佳的引晶凝胶焙烧温度和时间分别为1200℃至1350℃,1小时至5分钟之间是比较合适的,虽然也可使用其他的温度和时间对粗于0.25mm的丝来说,最好将干燥过的丝在温度和时间分别为大约400~600℃,予焙烧几小时至大约10分钟,以便除去残留的挥发物和粘在其中的水份,该水份在焙烧时可能在丝中产生裂痕焙烧不引晶凝胶一般如美国专利4,314,827中所公开的那样需要更高的温度和更长的时间特别是对从引晶凝胶制成的丝来说,过度焙烧会很快产生更大晶粒,它们吸收了周围的大部分或全部较小的晶粒,由此降低产品在微结构级别上的均匀性本发明的磨料丝颗粒应具有一定的长细比,即沿其主要尺寸或较长尺寸方向上的长度与沿垂直于该丝主要尺寸方向上任一最大宽度之比这个比值至少大约为1∶1当横截面为非圆形时,例如多边形,用垂直于纵长度方向的最大测量值来决定长细比虽然在许多应用中也使用了更长的丝,但其平均长细比范围最好是从大约2∶1至大约8∶1本发明的实例中,最有用的丝的硬度至少为16GPa,在大部分应用中,其最好至少为18GPa(维氏压头,500克载荷),其密度最好至少为理论密度的90%,一般最佳为95%纯密度的α氧化铝,硬度大约20~21GPa在某些情况下,至少在本发明的实施例中,磨料丝在其纵长尺寸方向是扭曲的或卷曲的,或者具有一定程度的弧形成弯曲形可以相信,在粘接的磨料应用中,弯曲或扭曲的磨料丝可能优于其相应的直线形丝,因为弯曲或扭曲的外形使这样成形的磨料丝更难从粘结中抽出去另外,这种卷曲或扭曲的磨料丝使其更容易获得所需范围内的砂轮松散密度磨料丝的直径可高达1.5mm已经发现,用本发明的磨粒丝生产的粘结磨料制品远优于那些含有压碎熔融并烧结的磨料的同样制品这些磨粒的横截面尺寸(磨料尺寸)大约等于磨料丝的直径本发明的磨料丝形颗粒可用于粘接的磨料制品,例如砂轮、砂瓦,磨石,它们都包含粘结剂和烧结的可溶凝胶磨料丝粘结剂及磨料的量可按体积百分比变化,粘结剂从3%至76%,磨料从24%至62%,气孔从0至73%从这些体积百分比可以看出,丝形磨料生产的粘接的磨料制品在更软的等级上,其具有的结构数比传统形状的尺寸等大的磨料迄今可能具有的结构数高得多然而,传统的气孔诱发介质例如空心玻璃球粉,实心玻璃球粉,空心树脂球粉,实心树脂球粉,泡沫玻璃粒、氧化铝泡等等以及类似物,可结合到砂轮中,并且,就硬度等级和结构数的变化而论,为这些介质提供了更大的活动余地磨料产品可用热固性树脂粘结剂或陶瓷粘结剂粘接较好的热固性树脂粘结剂是基于下列材料制成的,即苯酚甲醛树脂,环氧树脂,聚氨基甲酸酯,聚脂,紫胶,聚酰亚氨,苯氧基,聚苯并咪唑或它们的混合物粘接剂还包括体积百分比为0至75%的任意一种或几种本领域中公知的填充剂或磨削添加剂当粘接剂为热固性塑料时,合适的填充剂包括冰晶石,硫化铁,氟化钙,氟化锌,氯化铵,氯乙烯和二氯乙烯共聚物,聚四氯乙烯,氟硼酸钾,硫酸钾,氯化锌,蓝晶石,富铝红柱石,霞石正长岩,二硫化钼,石墨,氯化钠及这些各种材料的混合物在陶瓷粘接剂中加入填充剂时,由于这种粘接剂要求熟化的温度相对较高,从而在某种程度上限制了加入的有用的填充剂的数量但有些填充剂,例如蓝晶石,富铝红柱石,霞石正长岩,石墨及二硫化钼;使用时取决于特定的陶瓷粘接剂的熟化温度在陶瓷粘接的砂轮上用磨削辅助剂浸渍,例如熔融的硫化物,或者浸渍上将磨削辅助剂带入砂轮气孔中的载体,例如环氧树脂用本发明的磨料丝制造的涂覆的磨料制品时,磨料丝附到柔性底衬上,丝的一端紧靠粘接层,一般该丝从柔性底衬向外伸出,并且常常用上胶涂料在其上涂覆一层进一步使其牢固地粘在底衬上该底衬可以是任何公知的用于涂覆磨料的底衬,例如纺织品或缝合的纤维品,薄膜或纸根据应用的需要,在工业上用于制造底衬的各种不同的公知的布或纸的抛光方法及材料,也可同样地用来制备本发明的涂覆磨料丝的底衬同样,也可使用任何公知的用于涂覆磨料制品生产的标准生产厂家的涂料如果本发明的磨料丝的平均长细比能够是,例如1.5∶1至6∶1,甚至更高,则上胶涂料可用标准的辊压涂覆技术涂覆如果磨料丝具有更高的长细比,用其他设备涂覆最好,例如用喷涂设备,这样就不会把磨料丝过分地向下压所用的上胶涂覆材料可以是在涂覆磨料工业中所用的任意公知类型的材料已经发现,本发明的涂覆磨料基本上比那些含有现有技术中压碎的磨粒组成的磨料具有更长的寿命并且与现有技术中的涂覆磨料相比它们的切削速度往往波较小,而且在其有效寿命内在工件表面产生的光洁度波动也小意外的是,也发现用含有本发明的磨料丝的涂覆磨料在进行低压磨削加工时,特别有效本发明独特的优点在于不仅能提供具有各种所希望的长度的磨料丝的涂覆磨料制品,而且为了特殊用途,磨料丝的尺寸分布可以按所要求的那样准确或者变化,这是迄今用辊压碎的磨料无法获得的本发明更进一步的优点是在含有本发明的磨料丝的涂覆磨料制品中,磨料丝可切成各种长度或各种长细比,可模似丝混合物标准等级CAMI此外,涂覆的磨料能够具有设计的混合物,该混合物具有在等级上,直径可控并极细的磨料丝磨料丝使用时另一个优点是,不存在传统的压碎磨粒型磨料所产生的浪费,所以生产过程是更经济更有效本发明的磨料丝及含有该磨料丝的粘结制品和涂覆制品,如以下实施例所显示的,一般优于先有技术的磨料制品本发明的磨料制品适于磨削各种类型的金属,如各种钢,象不锈钢,铸钢,淬硬工具钢;各种铸铁,例如韧性铸铁,可锻铸铁,球墨铸铁,冷模铸铁和模铸铁,以及各种如铬、钛、铝一样的金属由于所有的磨料和粘结制品或涂覆制品均可含有本发明的磨料丝,故本发明的磨料和粘结制品在磨削某些金属时比其他类似产品更有效,尤其是在某些磨削应用中比其他的更有效最佳实施例的说明实施例1在这个实施例中,将从康德阿·协米GMBH(CondeachemieGMBH)获得的196.4公斤PuralNG型一水氧化铝粉末和含有1.37公斤α氧化铝晶种的38.2公斤研磨水液以及28.8公斤蒸馏水在常规的双壳V型搅拌机中经5分钟混合,从而形成基本均匀的砂浆这时,在搅拌机叶片运动的同时,将16公斤硝酸(70%的浓度)用44.6公斤蒸馏水稀释并加到该搅拌机中,再混合大约5分钟后,溶胶就转化成含有61%的固体成分的并且包含有基本上均匀地弥散的晶种的凝胶该实施例的晶种是将从俄亥俄州、西富卫的金刚石制品公司(Diamonite Products compamy,Shreve,Ohio)获得的规定等级的,含有88%的氧化铝磨削工质(每个直径12mm,长12mm)加入蒸馏水在型号为Sweco 45的磨床上进行研磨,直到水中的颗粒(氧化铝晶种)在水中达到至少100M2/g的特定表面积为止所用PuralNG型粉末的纯度大约为99.6%,其次要的含量是碳,二氧化硅,氧化镁和氧化铁所述的引晶凝胶,通过带有许多直径大约为1.19mm的孔的壁面光滑的挤丝模,常规地挤压连续的凝胶丝然后将这些凝胶丝在75°~80℃温度下和大于85%的相对湿度下干燥24~72小时干燥处理后,这些丝比较脆,能够容易地断成或压碎成短长度的丝在该实施例中,这些丝被加工成其平均长度为2mm至8mm的纤维丝然后,将这些短丝焙烧,先以每分钟小于2℃的速率加热至800℃,再以每分钟大约5℃的速率从800℃加热至1370℃,并在1370℃下保温5分钟,然后进行冷却,从而使其转化成α氧化铝完全冷却后,丝的平均直径大约为0.58mm,长度无规则,大约是1.5mm至6mm,其中基本上是纯α氧化铝其平均晶粒大小为0.3微米,维氏硬度大约是16GPa在这里,所有的晶粒尺寸都是由截取法测量得的上述的这些丝的直径比粒度为30的标准磨粒仅仅稍小一点根据与鲁毅(Rue)共同拥有的美国专利4,543,107公开的技术,可用传统装置将这些纤维丝状磨粒制成陶瓷粘结的砂轮对比砂轮是由马塞诸塞州,渥尔塞斯特的诺顿公司(NortonCompany,Worcester,Massachusetts)出售的粒度为30的32A(亚硫酸处理的)号熔融的磨粒制成这些试验砂轮做成直径7英寸(178mm),厚为1/2英寸(12.7mm),并且有一又四分之一英寸(31.75mm)的中心孔在每个砂轮中,磨料的总的体积百分数保持48%的常量配方A(见表1)的陶瓷粘结剂的体积百分数保持7.21%的常量表1粘结剂A的熔融的氧化物配方SiO247.61Al2O316.65Fe2O30.38TiO20.35CaO1.58MgO0.10Na2O 9.63K2O 2.86Li2O 1.77B2O319.03Mn20.02P2O50.22100.00美国专利申请号为07/236,586,申请日为1988年8月25日,转让给本发明同样的受让人,目前还未作出最终审查结果的专利申请中所述内容是使用另一种陶瓷粘结剂的实例这种粘结剂中一种是标示为3GF259A,是由滨夕法尼亚的彼德斯堡的O.Hommel公司(O.HommelCompanyofPittsburghPennsylvania)注册并出售这种熔融的粘结剂由63%的氧化硅,12%的氧化铝,1.2%的氧化钙,6.3%的氧化钠,7.5%的氧化钾和10%的氧化硼组成,各种成分都是以重量百分比计混合物及湿砂轮都是用传统方法制成的为了熟化粘结剂,湿砂轮在900℃下进行焙烧焙烧过程是以25℃/小时的速率从室温升至900℃,并在900℃下保温8小时,再以自由冷却速率降至室温当把陶瓷粘结剂成分与磨料混合后,用钢模将试验用砂轮压制成具有所需要的44.79%气孔率的形状,然后砂轮在43小时内烧至900℃,并在该温度下保温16小时,再冷却至室温然后,对这些焙烧过的砂轮进行修整及表面加工至1/4英寸(6.35mm)的厚度,为磨削槽试验作准备本发明的纤维丝磨料砂轮标号为SN119,而作对比的传统的熔融的磨料砂轮标号为32A30被磨削的材料是D3工具钢,淬硬至RC60,磨削的槽的长度为16.01英寸(40.64cm)试验是用Brown型和Sharpe型平磨进行的,砂轮速度定为6000sfpm(30.48smpm),工作台速度定为50fpm(0.254mps)试验时,每个来回行程向下的进给量分别为1,2和3密耳(0.025mm,0.051mm,0.076mm)三种,总磨削量为60密耳(1.524mm)在每种进给量磨削时,都对砂轮的磨损量,切削的金属量及所需功率进行测量由表2及以后所用的术语“G-比”,指的是在给定的磨削加工时,其数值是对于每种给定的磨削转速,所测得磨削掉的金属体积除以所测得的砂轮磨损掉的体积商越高,则砂轮质量越好试验结果如表2所示表2干磨D3钢上上槽的结果磨料(类型)砂轮型号进给量(密耳)G-比比功率S/W HP/1n3min Joules/mm3熔融型32A3014.07.0919.35(块状)24.259.0224.623停转停转停转烧结型130.285.1113.95(挤丝型)SN119221.314.9113.40348.168.9424.41以每分钟6000英寸的砂轮表面速度干磨D3钢时,根据本发明的磨粒做成的砂轮的寿命是最好的,它是具有相同横截面直径的熔融块形磨粒制成的传统砂轮的寿命的5至10倍,并且磨削单位体积钢所耗功率小在高速磨削金属时,根据本发明所制的具有长丝形磨粒的砂轮的优点特别明显对给定的磨削等级,含丝形磨料的砂轮更自由地差不多就象表2中所示的较低功率消耗水平一样磨削,而且产生热量少,也不会烧坏工件表面的表洁度对于制造切削工具来说,要避免在加工时产生金属损坏,低热不烧坏加工表面是必需的实施例2在这个实施例中,陶瓷粘结砂瓦是用实施例1中所述的同样磨粒制成的这些砂瓦制成适于安装在12英寸(30.48cm)直径的桥特朗德(chortland)卡盘上每个砂瓦是5英寸(12.7cm)高,横截面等于12英寸(30.48cm)圆上的弦长为7.5英寸(19.05cm)处的截面该砂瓦是以实施例1中制造砂轮一样的方法制成的把现在所用的最好的熔融磨料制成的传统砂瓦与本发明的磨料砂瓦进行磨削比较实验,是用布朗查德(Blanchard)立轴平磨,在1018号钢制成的12英寸(30.48cm)正方形钢板上进行的用1∶40比例的溶水油和水的冷却液进行湿式磨削试验三种向下进给的速度0.016英寸/分(0.406mm/分),0.022英寸/分(0.559mm/分)以及0.028英寸/分(0.711mm/分)在每种情况下,向下进给量的总量为100密耳(2.54mm),分四次进给每次进给都进行砂瓦磨损量,磨削的金属量以及功率测量其结果如表3所示表3在1018钢上砂瓦的平磨结果磨料(型号)砂瓦号进给速度G-比功率mils/minmm/min(S/W)(KW)熔融型160.4067.448.4(块状)32A30220.5595.7512.0280.7114.4812.0烧结型160.40634.328.8(挤丝型)SN119S220.55912.649.2280.71112.649.6正如能够从表3中所示结果看出的,本发明丝形磨料制成的砂瓦,在G-比方面,其工作性能优于目前使用的熔融磨料砂瓦的300%至500%,而在高进给时功率消耗明显地减少实施例3在这个实施例中,生产了一批直径较小的丝形磨料,它们是将3.2公斤Pural NG型一水氧化铝与含有22克和实施1中一样的α氧化铝晶种的研磨过的水液1.39公斤混合而成的混合5分钟后,加入由750CC蒸馏水稀释的70%的硝酸200克,再连续混合5分钟,从而形成含有59%固体的晶种在其中均匀分布的凝胶然后,用孔径为0.6mm的多孔的表面光滑的挤丝模,以传统的方式将这些引晶的凝胶进行挤丝挤成的丝干燥后,切成平均长度为3mm的短丝,然后焙烧至1320℃并保温5分钟焙烧后,单个丝的横截面尺寸相当于标准粒度为50的磨料在1320℃的焙烧温度下焙烧5分钟比实施例1中的稍短一点但在实施例1中,其丝是弯曲的或扭曲的除砂轮直径是5英寸(127mm)之外,按实施例1所述的工艺把磨料丝制成试验砂轮作对比的砂轮是由与丝形磨料成份相同的引晶可溶凝胶氧化铝磨料制成,但该磨料是将干燥的砂饼变成与熔融氧化铝磨粒相似的块状磨粒制成的含有本发明的丝形磨料的砂轮标号为X31-1,而块状可溶凝胶磨粒砂轮标号为SN5通过对实施例1中所述的淬硬的D3钢的槽进行磨削,对这些砂轮进行实验,实验结果示于表4之中表4对D3钢的槽进行干磨的结果磨料(类型)砂轮号进给G-比比功率(密耳)(S/W)HP/1nminSoules/mm可溶凝胶0.524.323.062.8(块状)SNS1.035.815.542.32.028.810.628.9可溶凝胶0.526.2718.249.7(挤丝型)X31-11.048.5812.935.22.073.788.723.75这些结果清楚地显示出,丝形可溶凝胶氧化铝磨料比块状磨粒可溶凝胶氧化铝磨料优越在高进给量时,本发明的磨粒具有高达255%的G比,并少消耗18%的功率实施例4在这个实施例中,用传统的方法制造了4套标准的热压酚醛树脂粘结的轻便砂轮,直径为6英寸(15.24cm),厚0.625英寸(1.59cm)并具有0.625英寸(1.59cm)的中心孔第一套砂轮含有美国专利3,891,408所述的氧化铝一氧化锆共熔的块状磨料(AZ);第二套砂轮含有美国专利-4,623,364中所述的粒度为16(美国标准筛网系列)的引晶可溶凝胶块状磨料(SGB);第三套砂轮含有上述实施例1中所述的但直径为0.074英寸(1.5mm)的丝形引晶可溶凝胶氧化铝磨料(SGF)所有的砂轮除磨料型号不同之外,其他都基本相同它们都是有相当高的硬度等级,其成份构成体积百分比是磨料48%,粘结剂48%,气孔4%所有的砂轮都在磨削工艺中以相同的条件对铁轨进行磨削加工以含有公知的共熔的氧化铝-氧化锆(AZ)磨料的砂轮作为参照基准,其结果如表5所示表5铁轨磨削试验(相对结果%)磨料变化功率常数砂轮磨损率材料磨削率KWG-比AZ100.0100.0100.0100.0SGB1.7KW239.9116.8106.748.6SGF140.2141.6107.8101.0AZ100.0100.0100.0100.0SGB2.2KW286.4117.7101.241.1SGF149.1137.2103.892.0AZ100.0100.0100.0100.0SGB2.3KW152.799.0101.464.8SGF140.0128.299.691.5AZ100.0100.0100.0100.0SGB2.5KW248.3107.5103.143.3SGF117.5120.9103.5102.9由表中的G比,即每单位砂轮磨损量所磨削的材料的体积比率,可看出,现在所用的AZ型磨料的整个质量比块状引晶可溶凝胶磨料优越得多,而其中所述丝形引晶可溶凝胶磨料只大致等效于AZ型磨料然而,磨削铁轨时,关键是铁轨必须在尽可能短的时间内进行磨削修理,因此,磨削金属的速度就成了评价磨削铁轨的砂轮质量的决定性因素含丝形引晶可溶凝胶磨料砂轮的金属磨削速率大大优于AZ型磨料砂轮和块状引晶可溶凝胶磨料砂轮在几种磨削工况下,丝形磨料砂轮磨去的金属重量比AZ型砂轮的分别重大约42%、37%、28%和21%,比块状引晶可溶凝胶磨料砂轮分别好大约25,20,29,和13个百分点丝形引晶可溶凝胶磨料比相应的块状的磨料优越的原因还没有完全弄清,但可断定差别确实存在实施例5根据公知的方法,人们制造了一系列商业化的酚醛树脂粘结的切割砂轮,这些砂轮的尺寸为20×0.130×1英寸(50.8×0.33×2.54cm),并且两侧用砂布盘加固这些盘的直径大约为砂轮直径的1/2,例如加固外套的直径为大约10英寸(25.4cm)三分之一的砂轮是由粒度为24(基于美国标准筛网系列)的,诺顿公司(NortonCompany)出售的熔融的压碎的块状氧化铝制成这种氧化铝的标号公知为AlUNDuM57A,AlUNDuM是诺顿公司(NortonCompany)注册的商标另外三分之一的砂轮含有上述的考垂哥(cottringer.etal)的美国专利4,623,364所述的粒度为24的块状引晶可溶凝胶磨料(SGB)最后三分之一的砂轮含有本发明的丝形引晶可溶凝胶氧化铝磨料(SGF),其横截面积大致等于粒度为24的各向相等的57A型磨料和块状引晶可溶凝胶磨粒的直径,例如大约为0.74mm以体积计算,所有砂轮都含有48%的磨粒,46%的粘结剂和6%的气孔将1.5英寸(3.81cm)厚的C1018号钢和1.5英寸厚(3.81cm)的304号不锈钢用砂轮进行干切割实验试验是在M150型石料切割机上进行的砂轮以每分钟12000英尺的表面速度运转,并进行30次切割每次砂轮在C1018号钢和304号不锈钢上进行切割的时间为2.5秒和4秒切割C1018号钢和304号不锈钢的比较实验结果分别示于下表6和表7之中表6材料切割-C1018钢砂轮磨料切削时间MRWWG-比功率相对G比No.(类型)(S)1n/mm1n/mmKW%157A2.55.470.826.6714.26100257A2.55.430.816.6713.971003574.03.450.755.589.271004SGB2.55.470.5110.7912.67193.45SGB2.55.510.5110.7913.20193.46SGB4.03.420.408.658.79155.07SGF2.55.510.3217.2411.90258.58SGF2.55.390.2521.5411.95322.99SGF4.03.370.1621.548.04386.3含丝形引晶可溶凝胶氧化铝磨料(SGF)的砂轮,在切割C1018号钢时,其整体性能和G-比比含有与SGF型磨料对应的块状磨料(SGB)的砂轮和含有熔融氧化铝磨料57A的砂轮都极为优越当切割时间为2.5秒时,SGF砂轮的G-比比对应的57A型砂轮的G-比高出158.5个百分点当切割时间为4秒时,则高出370.3个百分点SGF超过SGB的优点尽管没有象超过57A那么大,但仍是十分大的,即当切割时间为2.5秒时,高出93.4个百分点;当切割时间为4秒时,高出55个百分点人们还应注意到,除高得多的磨削质量外(G-比),SGF砂轮消耗的功率以率以计量也比57A或SGB磨料砂轮都明显地少所有三个试验的SGF砂轮消耗的率的总和是31.89,而三个SGB砂轮为34.66,三个57A砂轮为37.55所以SGF砂轮比含57A磨料的砂轮节省能源15.1%,比含SGB磨料的砂轮节约能源7.9%表7切割材料-304号不锈钢砂轮磨料切割时间MRWWG-比功率相对G比No. (类型) (S) 1n3/min 1n3/min KW %1057A2.55.511.085.1112.9610011″2.55.390.925.8512.0610012″4.03.450.487.228.9410013″4.03.420.398.669.1210014SGB2.55.640.5210.7912.43211.215″2.55.510.5110.8512.34185.516″4.03.500.2017.249.09238.917″4.03.450.2017.248.61200.518SGF2.55.340.3714.4311.81282.419″2.55.300.3714.4312.48246.720″4.03.390.1621.548.82298.321″4.03.310.1521.548.43248.7和切割C1018钢时一样,SGF砂轮大大优于现在使用的57A熔融压碎氧化铝磨料砂轮;比SGB磨料砂轮也显著地优越在每次切割时间为2.5秒时,SGF砂轮的G-比比57A砂轮高出182.4和146.7个百分点在每次切割时间为4秒时,同样差别是198.3和148.7个百分点与含SGB磨料的砂轮比较,SGF砂轮在每次切割时间为2.5秒时,具有71.2和61.2个百分点的优势;在每次切割时间为4秒时,具有59.4和48.2个百分点的优势就功率消耗而论,SGF砂轮消耗的功率大部分比57A和SGB砂轮都要节省,但节省量相对小些实施例6用传统的方法可制造四套商品化的酚醛树脂粘结的切割砂轮,其尺寸为20×0.130×1英寸(50.8×0.22×2.5cm),两侧用砂轮直径1/2的砂布盘加固砂轮成份体积的百分比为磨料50%,粘结剂32%气孔18%第一套砂轮是根据美国标准筛网系列用牌号为AlUNDUM53(53A)型的,粒度为50的熔融压碎块状氧化铝磨料制成ALUNDUM是马塞诸塞州渥尔塞斯特的诺顿公司(NortonCompany,ofWorcester,Massachusetts)注册的商标第二套砂轮含有考垂哥(Cottringeret.al)的美国专利4,623,364所述的块状烧结的引晶可溶凝胶磨料(SGB),其粒度也是50第三套和第四套砂轮分别含有上述实施例1中所述的但其横截面是大致等于53A砂轮中粒度为50的各向相等的磨料的直径的丝形烧结引晶可溶凝胶磨料和块状引晶可溶凝胶磨料所有的引晶可溶凝胶磨料都具有超细微尺寸的晶粒,后两套砂轮的磨料直径大约为0.011英寸(0.28mm),但砂轮26和27具有数值为9的平均长细比,而砂轮28和29具有数值为9的平均长细比,而砂轮28和29的平均长细比为6这些砂轮在表8中分别标为SGF(a)和SGF(b)用型号为Compball406型摆动式切割机切割直径为4英寸(10.16cm)的4340号钢棒切割是以每分钟摆动57次,摆动幅为1.62英寸(4.12cm)进行的同时对切割区进行水冷,切割时间为1分钟和2分钟切割砂轮表面速度是每分钟9870英尺结果如表8所示表8材料切割-4340号不锈钢砂轮No.磨料(类型)切割时间相对平均相对平均(S)G-比功率2253A6010010024SGB60113976026SGF(a)603191016028SGF(b)60335102602353A12010010025SGB120998427SGF(a)12035010312029SGF(b)120401102120G-比=测得材料磨去量与测得砂轮磨损量的体积比在每次切割时间为60秒时,两种含有丝形烧结的引晶可溶凝胶磨料SGF(a)和SGF(b)砂轮比广泛使用的熔融压碎53A氧化铝磨料砂轮和块状烧结引晶可溶凝胶磨料SG砂轮性能优越含有SGB磨料的砂轮的G-比,比53A砂轮高13个百分点,但SGF(a)和SGF(b)砂轮比标准的53A砂轮分别高219和235个百分点当切割直径为4英寸的钢棒的时间放慢至120秒时,53A砂轮和SGB磨料砂轮性能大致相同但两种含丝形烧结的引晶可溶凝胶磨料砂轮SGF(a)和SGF(b)的性能(G-比)比53A和SGB砂轮分别高3.5倍和4倍本发明的两种SGF砂轮和53A砂轮的功率消耗基本上没有差别对某些含有SGB和53A的砂轮来说,即使功率消耗低25~30%,但从丝形烧结引晶可溶凝胶磨料砂轮的相对平均G比高于它们209到301个百分点来看,其意义也显得暗然失色丝状引晶凝胶磨料的另一个用途是用在涂覆的磨料制品中这种产品中其显示出保持高速切削的时间比辊压的SG磨料更长的意想不到的能力实施例7这个实施例把丝形引晶凝胶(SG)氧化铝磨粒进行的研磨和光法度与传统的辊压获得的SG磨粒的研磨及光洁度进行了比较丝形磨粒平均直径(0.013英寸)大致等于粒度为50的磨粒(0.0139英寸),并且其长细比可在大约2∶1到8∶1范围内任选然而,如以下所述,所用的批量筛分导致某些十分长的丝和极不相称的大量极细微的粒产生磨料丝的成份与粒度为50的SG2011压碎型配制相同表9辊压磨料与磨料丝的分级结果颗粒(类型)第列号No.粒度等级LPD辊压08D168.350+3.2+1.9180.7磨料丝08D168.750-2.5+30.9209.7从上表可看出,两种不同的磨粒分级变化相互间十分显著读数“+3.2+1.9”意思是,当用CAMI分级筛系统进行实验时,辊压磨粒样品粗过级别高3.2%,细过级别的高1.9%对粒度为50的SG磨粒,这种公差是在允许的范围之内对磨料丝的样品,其读数为“-2.5+30.9”,表示该样品粗过级别的低2.5%,细过级别的高30.9%这是一个极不相称的数值,细端的高读数导致磨料丝“磨粒”都是同一形状数值越低,近似直径的比例越大,该直径比粒度为50的参照筛网的尺寸小用传统的方法制备好的磨料研磨盘其涂覆重量大约是粘结涂层15#/RM,上胶涂层23#/RM磨料丝65克,辊压磨粒52克经常规的弯曲之后,所制成的磨料丝研磨盘首先在低压钝化实验中进行鉴定表10列出了进行磨削和光洁度的比较结果 Ra=微米计的等分线误差;Rtm=微米计的波峰与波谷高度的平均值;Pc=波峰个数金属工件的光洁度质量通常用Ra和Rt值来衡量该Ra和Rt值是由抛光过的工件表面上的点(如中心、右边缘、左边缘)的扫描迹线测得的这些统计参数的意义对本技术领域的技术人员是公知的,并且在由工业金属产品公司(lndustrialMetalProductsLncorporateLmpco.)出版的,名为〈表面构造及零部件几何形状引论〉一书中清楚地下了定义,并对其作了完整的公开,这里编入只作参考一般说,Ra是表面平均粗糙度的测量值由于许多外形不同的表面具有相似的Ra值,因此这个数通常用从相同表面测得的其他参数作为补充在金属抛光技术中,Rt值常常用来补充Ra的测量值Rt值是由抛光处理后的工件表面残留的划痕或刻痕深度测得的Pc通常指划痕频率数从上述值可以看出,含有磨料丝的研磨盘在磨削时比传统的辊压磨料研磨盘优越起初,在最初的几个时间间隔内,磨料丝研磨盘以较低的速度磨削,然后以持久速度进行长时间的连续磨削由磨料丝产生的表面光法度看起来大致等于辊压磨粒产生的表面光洁度,然而,必须再一次指出,丝形磨料粒度的批量筛分导致如上所述的极不相称的大量的极细磨粒和十分长的磨料丝的产生,从而用更加可控的筛分就可能产生不同的光洁度为对磨料丝的粒度50与36的辊压磨粒磨削和产生的光洁度进行比较,做了进一步实验试件表面为1英寸,结果示于表11中 *=磨料丝;Ra=微米计等分线误差;Rtm=微米计波峰至波谷高度的平均值;Pc=波峰个数由上述结果可以看出在磨削时,粒度为50的磨料丝不仅比粒度为50的辊压磨料性能优越,而且磨削量等于粒度为36的对照磨粒的磨削量再有,初始时,磨料丝以比辊压磨粒稍低的某一速度磨削,但以后,它以持续速度磨削更长的时间在1英寸的钢表面上的试验表明,丝形磨粒产生的光洁度相近于粒度为36的对照磨粒产生的光洁度实施例8这个实施例说明了与在适当的介质中将α氧化铝磨粒挤丝后烧结成具有凝聚力的结构生产方式相反,当场生产丝形α氧化铝的方式的作用和效果根据本发明的这种产品是这样生产的混合勃姆石,用10%重量的超细微的α氧化铝的勃姆石与水在V型搅拌机中混合二分钟,将重量百分比为18%的硝酸溶液,根据勃姆石的重量为基础加入7.21%重量的硝酸,再继续混合5分钟,从而形成勃姆石凝胶为进行相应于上述实例的比较,制备一系列产品,除外的是为了使整个混合物含有高得多的氧化铝重量百分比而加入更多的α氧化铝(用作上述晶种材料的那种)保留勃姆石是为了给出混合物的挤压性其配方由下表12给出表12批号成份变化固体百分数%比较型Aα氧化铝30%70%比较型B★α氧化铝 30% 70%比较型Dα氧化铝90%/凝胶10%比较型Eα氧化铝60%/凝胶40%比较型Fα氧化铝60%/凝胶40%实例1α氧化铝(晶种)1%62%实例2α氧化铝(晶种)1%58%实例3α氧化铝(晶种)1%59%★另外用超声波对混合浆进行混合然后将这些材料挤压成丝,再在下述条件下进行干燥和烧结烧结氧化铝含量高的作为比较用的批料比烧结由引晶可溶凝胶过程产生的批料需要更高的温度用Instron型试验机,以0.2cm/min的机头横向速度,根据简单的三点式处理工艺,将样品丝进行强度试验将丝支承在相距1cm(在比较C、D、E的情况下为0.9cm)的一对棱边上,由刀口在这二点的中间向下施加压力该压力逐渐增加,直到丝断裂该压力除以丝的横截面积就是表13所示的断裂强度表13 单位K8/cm2批号焙烧温度时间丝的直径断裂强度(mm)平均值上限值比较型A1500℃30min.0.326,8317,465比较型B1550℃30min.0.31756,1626,2681450℃60min.1.005,4246,646比较型C1300℃6min..883,4304,0361350℃6min..872,3782,436比较型D1370℃4min.0.05411,19713,239比较型E1350℃30min.0.04314,36615,9861350℃5min.0.04614,15417,1121325℃30min.0.04614,29616,5491350℃30min.0.05310,28114,859实例11350℃30min.0.02016,00018,169实例2实例3由于挤丝后和焙烧前,作比较的丝批料很难挤成更细尺寸完整的丝,所以它们的尺寸粗得多可以发现,更高的α氧化铝含量比使这个问题更显著加剧由上述数值比较可知,作比较的丝有明显的低的断裂强度可以相信,这反映了由于烧结处理的结果使α氧化铝晶体之间产生的烧结结合力更加弱了因此,当由实施例8所述的实验进行测量时,本发明优选的丝横截面上具有至少800Kg/cm2,最好为至少10000Kg/cm2的断裂强度这与由烧结预先形成的α氧化铝获得的较低断裂强度的产品形成鲜明对比实施例9这个实施例说明了本发明的引晶可溶凝胶丝的生产将含有20克聚氧化乙烯的200ml蒸馏水与28ml含有α氧化铝的水混合,该水已与α氧化铝进行了Sweco式研磨,直到水中含有5%α氧化铝固体为止将该混合物进行16小时缓和地混合,然后加入200克一水氧化铝,(condeaNG)在Hobart型搅拌机中混合5分钟再加入8毫升20%的硝酸,整个混合物再进一步混合5分钟最终混合物是一种粘的弹性凝胶,将其放在直径为6英寸的碗状物中,其顶端固定一块胶质玻璃板该碗状物装在立式马达轴上,并密封在带横向通风装置的6英尺的方形壳体中碗状物以每分钟2500至3500转的速度旋转,迫使凝胶向外的和向上涌,它使胶质玻璃盖位移并打开一条缝因此凝胶由此向外甩出并增长成丝由于这些丝的直径非常小,故很快就干了将纤维形丝收集在排出口的筛网上,然后以每分钟上升15℃的速度焙烧,达到1350℃后,保温15分钟收集的纤维形丝是高纯度的,并且99%以上是由极细的α氧化铝晶粒组成的实施例10这个实施例说明了除由挤出横截面不同的引晶可溶凝胶氧化铝制成的直圆柱形丝之外的其他形状的丝形材料的生产正如本申请描述丝状材料之处一贯所用术语一样,丝的最大横截面尺寸用“粒度”来描述其产品示于下列表14中表14粒度1102424282450形状(横截面)方形管状(大孔)管状(小孔)三角形圆形圆形焙烧温度℃127012701270127012501250焙烧时间(分)55551818硬度(GPa)19.620.920.318.718.920.1直径(mm)0.140.890.890.710.910.33L/D5.8密度(g*/cc) 3.84 3.89 3.90 3.91 3.88 3.86晶粒大小0.140.190.180.170.160.18(微米)★用氦比重计测定用作为磨料时,上述所有磨粒都显示出优异的性能实施例11这个实施例说明晶粒大小对本发明的磨料的磨削性能的影响除一批(即G其较大的晶粒尺寸可通过把引晶工艺去掉最容易地获得)外,其他批号的磨粒都是是由引晶可溶凝胶工艺生产的磨粒特性如下表15磨粒批号水溶液密度(gm/cc)晶体尺寸(微米)喷砂惯穿度(mm)A3.941.163.91B3.930.653.84C3.890.543.83D3.920.424.14E3.900.394.16F3.880.263.92G*3.952.542.99*晶体尺寸都是由截取法测得的具有圆形横截面的磨粒的直径相应于粒度为50的尺寸用于制造用相同陶瓷粘结材料制成的尺寸为127mm×12.7mm×31.75mm的砂轮的各样品磨丝有一长细比的范围对每个砂轮进行修整,使之成为宽6.4mm的矩形轮面,并可经受干法磨削和湿法磨削干法磨削用硬度为Rc60,尺寸大约是100mm×400mm的D3钢板砂轮速度为6500SFPM湿法磨削采用尺寸为100mm×400mm的4340号淬火钢,以及与自来水比例为1∶40的怀特和白革莱(White和Bagley)E55冷却剂,和25mm的ID挠性喷咀砂轮速度是8500SFPM加工过程用下列参数1、工作台速度为15.24m/min2、向下进给量干磨为0.5,1.0和1.5密耳湿磨为0.5,1.0和1.0密耳向下进给总量为100密耳3、测量砂轮磨损量(WW),金属磨削率(mrr),光洁度,100密耳后的功率和作用力(除了进给量为1.5密耳,100.5密耳后的干磨)4、用单头金刚石,以1密耳的向下进给量,每分钟250mm的横向进给速度修整砂轮所获得的数据示于下表16和表17中作比较的数据涉及以相同材料粘结的粒度为54的商业惯用的可溶凝胶材料 表17湿法磨削型号向下进给平均峰值 1n3/in G-比表面光洁度量(mils)功率(瓦)MRRWW比较用0.59400.24700.005158.1601.09600.59420.009662.0801.511200.88390.017849.81000.54000.10350.16520.6240G1.05000.19390.31270.63201.56400.29100.48520.63000.57200.23640.04305.5170A1.08500.09920.06907.12001.510000.71820.08928.12800.58000.26310.03019.7120B1.010000.51960.051410.11201.511200.79160.051515.42600.56400.26250.023811.0110C1.09600.55320.031217.71501.510400.82390.045818.01700.56400.27360.026210.5190D1.09200.56500.032117.61801.511200.85430.031726.92000.54800.26130.024710.6190E1.06900.55500.033316.71801.59200.82840.047117.62000.56800.29150.007937.1170F1.08800.58380.015637.32001.510400.87960.017644.8200从上述数据可以清楚地看出当晶粒尺寸降低时,磨削性能显著改善另外,在干磨中,所用的力越大(增加向下进给量),砂轮磨削的越好这是最令人难以想象的一般的经验是随着力的增加,G-比降低,因为磨粒开始磨光,变成无效的切削刃相反,本发明的磨料只有极小的额外的砂轮磨损,大都较好地保持着
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:烧结的可溶凝胶氧化铝磨料丝的制作方法本发明烧结的氧化铝基磨料丝主要是由细微的α氧化铝晶体所组成。
查看更多专利详情