早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

具有力感测远端头的导管制作方法

  • 专利名称
    具有力感测远端头的导管制作方法
  • 发明者
    T·V·塞尔基
  • 公开日
    2011年8月31日
  • 申请日期
    2011年1月24日
  • 优先权日
    2010年1月22日
  • 申请人
    韦伯斯特生物官能公司
  • 文档编号
    A61B5/0402GK102166136SQ20111003325
  • 关键字
  • 权利要求
    1.一种导管,包括 细长导管主体;可偏转段,所述可偏转段处于所述导管主体远端; 顶端电极,所述顶端电极处于所述可偏转段远端;以及接触力传感器,所述接触力传感器接触所述顶端电极,以接收作用于所述顶端电极的接触力,所述力传感器具有主体和至少一个传感器,所述至少一个传感器具有对所述主体因所述接触力而产生的变形有反应的电特性,所述至少一个传感器适于接收电流并输出指示所述电特性变化的电信号2.根据权利要求1所述的导管,其中所述力传感器具有主体,并且所述至少一个传感器为应变计,所述应变计对所述力传感器的所述主体的至少一部分的拉伸和压缩有反应3.根据权利要求2所述的导管,其中所述电特性为电阻率4.根据权利要求1所述的导管,其中所述力传感器具有主体,并且所述至少一个传感器对所述主体的至少一部分的应变和应力有反应5.根据权利要求3所述的导管,其中所述电特性为电感6.根据权利要求3所述的导管,其中所述电特性为磁滞损耗7.一种导管,包括 细长导管主体;可偏转段,所述可偏转段处于所述导管主体远端; 顶端电极,所述顶端电极处于所述可偏转段远端;以及在所述可偏转段和所述顶端电极之间的接触力传感器,所述力传感器包括杯形主体、 多个辐条、柱杆构件、和安装在所述辐条之一上的至少一个应变计,所述辐条会聚在所述主体上的一定位置处,所述柱杆构件从所述位置延伸, 其中所述柱杆构件的一端连接到所述顶端电极8.根据权利要求6所述的导管,其中在所述顶端电极和所述力传感器的所述主体之间存在间隙9.根据权利要求6所述的导管,其中每个辐条具有安装于其上的至少一个应变计10.根据权利要求6所述的导管,其中每个辐条具有至少两个表面,并且每个表面具有安装于其上的至少一个应变计11.根据权利要求6所述的导管,包括至少三个辐条12.根据权利要求6所述的导管,还包括延伸穿过所述柱杆的冲洗管13.根据权利要求6所述的导管,还包括在所述辐条之间的孔14.一种导管,所述导管包括 细长导管主体;可偏转段,所述可偏转段处于所述导管主体远端; 顶端电极,所述顶端电极处于所述可偏转段远端;以及在所述可偏转段和所述顶端电极之间的接触力传感器,所述力传感器具有圆柱形主体和至少一个应变传感器线,所述线具有被磁性膜围绕的区段,所述区段和所述磁性膜嵌入所述主体内15.根据权利要求13所述的导管,其中所述线被施加预应力16.根据权利要求13所述的导管,其中所述线在大致平行于所述力传感器的纵轴线的方向上延伸17.根据权利要求13所述的导管,其中所述顶端电极具有近端底脚,所述圆柱形主体具有远端,所述远端被环锯以接纳所述顶端电极的所述近端底脚18.根据权利要求13所述的导管,还包括至少三个应变传感器线,每个所述传感器线具有被磁性膜围绕的区段,每个所述区段的磁性膜被嵌入所述主体内19.根据权利要求17所述的导管,每个所述应变传感器线被彼此等距地设置成围绕所述力传感器的纵轴线的径向图案20.根据权利要求13所述的导管,其中所述磁性膜对应变敏感21.根据权利要求13所述的导管,其中所述线导电
  • 技术领域
    本发明涉及用于消融和感测心脏组织电活动的电生理导管,具体地讲,涉及在其远端具有接触力感测功能的电生理导管
  • 背景技术
  • 具体实施例方式
    图1说明远端头具有力感测功能的导管10的实施例该导管包括具有近端和远端的细长导管主体12、位于导管主体12远端的可偏转中间段14、和适于标测、消融和检测施加到顶端电极17的力(例如当顶端电极接触组织壁19时)的远端段15该导管也包括在导管主体12近端处的控制手柄16,用来控制中间段14的双向偏转控制手柄16也可用作控制器11的导线管,该控制器适于向远端段15发送电气输入信号并接收来自它的电气输出信号,并处理这些输入和输出的电信号,以标测、消融和/或通过(例如)微处理器13 感测力,其中微处理器应用了具有力感测解决方案的程序算法根据本发明,这些信号包括来自装在远端段15壳体内的三轴力传感器的信号,该传感器可以检测和测量顶端电极上的接触力,从而使控制器和处理器可适合在计算接触力向量中处理这类信号参照图2A和2B,导管主体12包括具有单个中央腔或轴上腔18的细长管状构造 导管主体12是柔性的(即可弯曲),但沿其长度基本上是不可压缩的导管主体12可为任何合适的结构,并且可由任何合适的材料制成目前优选的结构包括由聚氨酯或PEBAX制成的外壁20外壁20包括由不锈钢等制成的嵌入式编织网,以增大导管主体12的抗扭刚度,使得当旋转控制手柄16时导管10的中间段14将以相应的方式进行旋转导管主体12的外径并非决定性因素,但优选地为不大于约8F(frenCh,弗伦奇), 更优选地不大于约7F同样,外壁20的厚度也不是决定性因素,但要足够薄,以使得中央管腔18可容纳线、电缆和配管等如果需要,外壁20的内表面可衬有加强管22,以得到改善的扭转稳定性在本发明所公开的实施例中,导管具有外径为约0.090英寸至约0. 100英寸和内径为约0. 061英寸至约0. 065英寸的外壁20加强管22的远端和外壁20的远端之间可用粘合剂彼此固定地附接,其中接合处靠近导管主体12的远端和近端在控制手柄16和可偏转段14之间延伸的部件穿过导管主体12的中央管腔18 这些部件包括顶端电极17的导线40和远端段15的任何环电极、远端段内力传感器的主导线160、用于向远端段15递送流体的冲洗管38、电磁位置传感器的电缆48、和/或用于双向偏转中间段14的一对拉线44图2A、2B和2C中还示出了具有一段较短的管19的可偏转中间段14的实施例该管也具有编织网构造,但具有多个离轴管腔,例如,第一管腔30、第二管腔31、第三管腔32 和第四管腔33在所示实施例中,直径上相对的第二管腔31和第四管腔33中各有一根用于双向偏转的拉线44第一管腔30载有导线40、主导线160和传感器电缆48第三管腔 32载有冲洗管38中间段14的管19由比导管主体12更柔韧的合适的无毒材料制成适用于管19 的材料是编织聚氨酯,即具有嵌入的编织不锈钢或类似材料的网的聚氨酯或PEBAX每个管腔的大小并非决定性因素,但要足以容纳延伸穿过其的各部件图2A和图2B中示出了将导管主体12附接到中间段14的管19的方式中间段 14的近端包括接纳导管主体12的外壁20的内表面的外周凹口中间段14和导管主体12 通过胶或类似材料附连如果需要,可在导管主体内的加强管(如果提供)的远端与中间段的近端之间设置间隔区(未示出)该间隔区使导管主体和中间段的接合处形成柔韧性的过渡区,其使此接合处平滑地弯曲而不会折叠或扭结具有此类间隔区的导管在美国专利No. 5,964,757 中有所描述,该专利的公开内容以引用方式并入本文各拉线44优选地涂覆有Teflon. RTM拉线44可由任何合适的金属(如不锈钢或镍钛诺)制成,并且用特氟隆涂层赋予拉线润滑性拉线的直径优选地在约0.006至约 0. 010英寸的范围内如图2B和2C所示,导管主体12内每根拉线44的一部分穿过与拉线 44呈包围关系的压缩螺旋弹簧35压缩螺旋弹簧35从导管主体12的近端延伸至中间段 14的近端压缩螺旋弹簧35由任何合适的金属制成,优选地为不锈钢,并且压缩螺旋弹簧自身紧密地缠绕,以提供柔韧性,即弯曲性,但可抗压缩压缩螺旋弹簧的内径优选稍大于拉线44的直径在导管主体12内部,压缩螺旋弹簧35的外表面还覆盖有柔韧的不导电鞘管39,例如由聚酰亚胺配管制成的鞘管拉线44的近端锚固在控制手柄16内拉线的远端锚固在中间段14远端附近,如图2B所示每根拉线的远端均设有T形锚47,该锚包括贴合并压皱在拉线远端上的一短截不锈钢管,如皮下注射器座(hypodermicstock)不锈钢管固定到(如通过焊接)由不锈钢带等形成的十字件上十字件牢固地固定到管19外壁上,以锚定每根拉线的远端第一拉线穿过可偏转中间段14的第二管腔31,第二拉线穿过可偏转中间段14的第四管腔33通过适当操纵偏转构件37 (图1),可实现偏转线44相对于导管主体12的独立纵向移动,导致中间段14偏转,从而操纵远端段15中间段14的远端处是包括顶端电极17和力传感器100的远端段15参照图3、 4和5,力传感器具有“杯”形主体102,该主体包括具有远端106和近端108的大致圆柱形的壁104,以及大体位于远端106的横向平面内的多个间隔开的径向臂或辐条110本领域普通技术人员应当理解,臂未必位于横向平面上,并且可以弯曲,只要径向对称即可臂110 向中心会聚到力传感器的纵轴线114上的毂112上远端线形构件116沿着力传感器的纵轴线114从毂112向远端延伸圆柱形壁104和臂110具有大致相同的厚度,并且每个臂都具有在环形壁和毂之间共同的大致均勻的宽度圆柱形壁104限定在近端108和远端106之间的中空内部空间120在近端108处,壁104环绕开口 122而形成中空内部空间120 在远端处,臂110在它们之间限定大致三角形或楔形的孔126,以允许从远端或向远端方向进入和穿入中空内部空间120在所示实施例中,线形构件116为具有圆形横截面的中空圆柱形直杆,但应当理解,直杆可具有关于纵轴线114对称的任何横截面形状,并且任何平面部分(planar sections)均与臂110对齐由于力传感器100的尺寸限制,直杆的形状很大程度上取决于可用的制造技术在近端固定地安装或以其他方式连接到臂110和毂112的情况下,直杆 116向远端延伸,从而对沿其长度施加并传递到臂110的压力-张力和/或弯曲荷载敏感 参照图4,当在箭头140方向向直杆116施加力时,臂IlOa受到的应力/应变在臂的远端半部D内产生压力,在臂的近端半部P内产生张力本领域普通技术人员应当理解,通过测量每个臂内的压力和张力,可以测量具有径向和/或轴向分量的任何力,从而确定在三维坐标系内的三轴力向量此外,由于可使用磁性位置传感器监测导管位置,并三维标测心室壁,因此可以确定相对于心壁的顶端电极接触区域,从而计算其他参数,例如顶端电极接触压力由于接触力不足会导致形成不充足的消融灶(消融灶深度与接触力相关),接触力过大会导致组织壁穿孔,因此利用这种向量和/或参数可以确定顶端电极是否紧贴组织壁正确设置在所示实施例中,直杆116具有中空内部空间142,因此可充当中央流体口,穿过该口可以将冲洗液或其他流体(例如生理盐水或肝素)递送到顶端电极,以冷却组织、减少凝结和/或有利于通过增加RF能量输入形成更深的消融灶此外,导线、安全线等也可穿过臂110之间的孔126在所示实施例中,存在至少三个径向臂110a、110b、110c,但本领域普通技术人员应当理解,在主要因制造技术而受限的情况下,多个的数量可以在约2个和 10个之间的范围内力传感器100关于其纵轴线114径向对称,臂110具有相同的尺寸和形状,并且关于纵轴线彼此径向等距当有三个臂时,这三个臂的中心围绕纵轴线成约0度、120度和240 度,其中每个臂的宽度在臂和环形壁的接合处跨越约30度力传感器可由具有足够低的热膨胀系数的任何合适的材料制成合适的材料包括不锈钢和钛,例如,17-4或15-5不锈钢和6AL-4V钛在这方面,力传感器的优选材料具有最佳的静误差带(具有非线性、不可重复性和滞后性),并且包括具有低滞后性和低热膨胀系数的金属,如17-4PH或钛6AL4V在构造力传感器时,最好避免使用具有不同热膨胀系数的不同材料力传感器主体102的“杯”形可采用合适的方法形成,包括拉制杯成形法臂110 可采用合适的方法形成,包括激光切割、冲压或铣削直杆116可采用任何合适的方法连接到毂,包括旋转焊接、钎焊或激光焊接力传感器也可由棒材(整块)在瑞士型CNC车床上加工而成在图4和5的实施例中,壁204具有约0. 046英寸的外半径RW、约0. 069英寸的长度LW、和约0. 008英寸的径向厚度TRW以及约0. 007英寸的远端厚度TDW直杆116具有约0. 030英寸的外径DBJ々0. 058英寸的长度LB和约0. 004英寸的厚度TB (参见图4) 每个臂都具有约0. 024英寸的宽度WA如图3A和;3B所示,每个臂或辐条110有利地在臂110远端表面和/或近端表面上设有至少一个硅半导体应变计或应变传感器(本文中“传感器”和“计”可互换使用)在所示实施例中,每个臂的每个远端表面和近端表面各装有一个应变计,即总共三个近端应变计GPa、GPb和GPc,以及三个远端应变计OTajDb和⑶C每个应变计对于相应的其上装有应变计的臂的近端半部或远端半部受到的拉伸或压缩有反应六个U形应变计通过环氧树脂之类的粘合剂对称地安装在臂上,并形成三对(GPa/⑶a)、(GPb/⑶b)和(GPc/⑶c),每对包括位于同一臂上的远端应变计和近端应变计如本领域普通技术人员所了解,半导体应变计是电阻随施加到其上的应变而变化的装置该属性使其非常适合精确测量极小的力引起的材料应变与较为常规类型的应变计比,由半导体材料制成的应变计具有优点这些优点包括能够测量更大范围的材料应变 (最大3倍超范围)、“灵敏度”更高(可以可靠测量分辨率0. 1微英寸的应变)和尺寸更小半导体应变计的形状可以变化,包括条形、U形和M形,例如Micron Instruments (Simi Valley, California)制造的那些应变计的设计意图是提供士0. Ig的计算理论力分辨率当采用500微米应变满量程工作范围的应变计时,传感器提供0-150g的顶端电极力向量测量范围和约750g的超限力(因超出材料屈服强度而在主体内产生永久变形)安全系数如本领域普通技术人员所了解,应变计可被定制为补偿各种参数,包括力传感器的非线性径向应变线、应变计在力传感器上的位置精度和力传感器主体的制造公差虽然臂上的每对应变计也可用作单个温度传感器(因此也可监测每个臂上应变计所在位置的温度),但成对的应变计(臂的每侧各一个)有利地抵消材料的温度效应当臂材料的温度发生变化时,材料膨胀或收缩一定量(例如,每英寸约几微米)因此,在臂的每一侧具有一个应变计有利地抵消因材料膨胀系数而产生的温度效应在壁104的内圆周上彼此径向等距地安装有适用于应变计电路的多个接合端子 (焊接凸块)156在一个实施例中,端子由厚约0. 14的铜包环氧树脂玻璃制成,以在电绝缘的同时保持柔韧性和强度,并能经受最高约275° F的高温端子用于大直径的主导线 (如铜线)160和纤细的应变计导线(如24K金线)162之间,对于后者每个应变计具有第一应变计导线和第二应变计导线在所示实施例中,存在一个公共端子156C和六个专用端子 156D公共端子156C接纳来自每个应变计的第一应变计导线162,六个专用端子156D中的每一个接纳来自每个应变计的第二应变计导线162在七个主导线160中,一个主导线在其远端连接到公共端子156C,剩余六个主导线各自连接到六个专用端子156D中不同的一个上主导线160在其近端连接到惠斯顿电桥电路170,如图6所示在所示实施例中,该电路包括三个半桥(每对应变计GPa/⑶a、GPb/GDb和GPc/⑶c各一个半桥),这些半桥有效地将应变计输出翻倍,并抵消了每个臂的材料温度效应该电路通过电桥闭合和具有电桥激励电压(如5. 0VDC)的灵敏度补偿电阻Rl及R2(如3000 Ω )得到平衡可能需要电阻器平衡温度补偿(RBTC)来进一步平衡电桥平衡温度补偿是在无负载时桥输出电压与温度有关的变化对于完全平衡,温度补偿应为零正平衡温度补偿的定义是在用电压适当激励电桥时,电桥输出电压变化在无负荷情况下随温度升高而增加负温度补偿是指电压输出随温度升高而减少这种情况发生在一应变计的电阻变化比另一应变计快时为了将变化减小至零,可以用RBTC将变化较快的应变计短接,如图6所示在整个电桥上施加 RBTC会使电桥失衡,通过改变桥闭合电阻Rl或R2之一,可以重新调整所产生的失衡如本领域普通技术人员所了解,由于桥激励电压受应变计自热的影响,因此输入应变计的总功率是预定的电路的输入可以是DC、AC正弦波或方波,只要总功率保持在阈
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:具有力感测远端头的导管的制作方法心律失常,具体地讲是指心房纤颤,一直是常见和危险的医疗疾病,在老年人中尤为如此。对于具有正常窦性心律的病人,由心房、心室和兴奋传导组织构成的心脏在电刺激的作用下可以同步、模式化方式搏动。对于心律失常的病人,心脏组织的异常区域不会像具有正常窦性心律的病人那样遵循与正常传导组织相关的同步搏动周期。相反,心脏组织的异常区域不正常地向相邻组织传导,从而将心脏周期破坏为非同步心律。之前已知这种异常传导发生于心脏的各个区域,例如窦房(SA)结区域中、沿房室(AV)结和希氏束的传导通道或形成心室和心房心腔壁的心肌组织中。包括房性心律失常在内的心律失常可以为多子波折返型,其特征在于电脉冲的多个异步环分散在心房腔室周围,并且这些环通常是自传播的。另一方面,或者除多子波折返型之外,心律失常还可以具有局灶性起源,例如当心房中孤立的组织区域以快速重复的方式自主搏动时。室性心动过速(V-tach或VT)是一种源于某一个心室的心动过速或快速心律。这是一种可能危及生命的心律失常,因为它可以导致心室纤颤和猝死。心律失常的诊断和治疗包括标测心脏组织(尤其是心内膜和心脏容量)的电性质,以及通过施加能量来选择性地消融心脏组织。此类消融可以终止或改变无用的电信号从心脏的一部分向另一部分的传播。消融方法通过形成不传导的消融灶来破坏无用的电通道。已经公开了多种用于形成消融灶的能量递送物理疗法,其中包括使用微波、激光和更常见的射频能量来沿心脏组织壁形成传导阻滞。在标测然后消融的两步法中,通常通过向心脏中插入包含一个或多个电传感器(或电极)的导管并获取多个点处的数据来感应并测量心脏中各个点的电活动。然后利用这些数据来选择将要在该处进行消融的心内膜目标区域。消融和标测涉及用导管的顶端电极接触组织壁。然而,并非总能相对于组织壁正确地定位顶端电极。因此,希望提供在远端头具有接触力感测功能的导管。最近的研究表明,消融灶深度可取决于RF消融过程中顶端电极施加到组织壁的接触力。因此,希望适于标测和消融的导管在远端头电极处具有接触力感测功能。此外,也希望这种导管装有三轴传感器,以确定作用在导管顶端的三维接触力向量。由于使用磁性位置传感器监测导管位置,并三维标测心室壁,因此可以确定相对于心壁的顶端电极接触区域,从而计算顶端电极接触压力。
本发明涉及用远端具有接触力感测功能的导管进行标测和消融。该导管包括导管主体、可偏转段和远端头段,其中远端头段具有顶端电极和用于感测施加到顶端电极的三维接触力向量的一体化接触力传感器。接触力传感器具有主体和至少一个传感器,其中传感器具有对主体变形有反应的电特性。传感器适于接收电流并输出指示电特性变化的电信号。在一个实施例中,传感器为对于传感器主体的至少一部分的张力和压力有反应的应变计,并且所监测的应变计的电特性为电阻率。在另一个实施例中,传感器对于主体的至少一部分的应变和应力有反应,并且所监测的电特性为电感或磁滞损耗。在一个更具体实施例中,本发明的导管包括导管主体、可偏转的中间段和具有顶端电极和接触力传感器的顶端段,其中接触力传感器对由施加到导管顶端电极的弯矩以及张力和压力产生的材料应变敏感。接触力传感器具有杯形主体、多个径向辐条、轴向直杆构件、和安装在其中一个辐条上的至少一个应变计。辐条会聚在主体的中心毂上,直杆构件从中心毂伸出并连接到顶端电极,以将所施加的接触力向量从顶端电极传到变形并拉紧力传感器主体的直杆构件上。在顶端电极和力传感器的主体之间沿纵轴线设置有间隙,以可从施加到顶端电极的力向量将弯矩荷载导入直杆。力传感器的每个辐条都可具有安装在其上的不止一个应变计,例如彼此对称地安装在辐条相对表面上的两个应变计。在该对称配置中,当采用半桥电路配置测量应变时,每个应变计会抵消另一个的温度效应,并且也会增加向主体的单位应变输入的电阻输出变化(电阻测量灵敏度)或使其翻倍。在另一个具体实施例中,本发明的导管具有导管主体、可偏转中间段、具有顶端电极和对应变和应力敏感的接触力传感器的顶端段。接触力传感器具有圆柱形主体和至少一根应变传感器线。传感器线导电,并且具有被应变敏感磁性膜包围的区段。该区段和磁性膜被施加预应力并嵌入主体内。顶端电极具有近端底脚,圆柱形主体具有远端,其中远端被环锯以接纳顶端电极的近端底脚。力传感器可具有多根应变传感器线(例如至少三根应变传感器线),每根线都具有被磁性膜包围的区段,其中每个区段的磁性膜都被施加预应力并嵌入主体内。每根应变传感器线被彼此等距地设置成围绕力传感器的纵轴线的径向图案, 以实现径向对称。通过参考以下与附图结合考虑的详细说明,将更好地理解本发明的这些和其他特征以及优点,其中图1是本发明的导管的一个实施例的俯视平面图。图加是沿第一直径截取的、导管主体和中间段的接合部以及中间段和连接外壳的接合部的实施例的侧面剖视图。图2b是沿大致垂直于第一直径的第二直径截取的、图加的接合部的实施例的侧面剖视图。图2c是沿C-C线截取的图加和2b的实施例的末端剖视图。图3是本发明的导管的远端头段的实施例的侧面剖视图,该远端头段包括顶端电极和对张力与压力敏感的接触力传感器。图3a是沿A-A线截取的图3的远端头段的实施例的末端剖视图。图北是沿B-B线截取的图3的远端头段的实施例的末端剖视图。图3c是沿C-C线截取的图3的远端头段的实施例的末端剖视图。图4是图3的力传感器的透视前视图。图5是图3的力传感器的透视后视图。图6是适于和图3的力传感器一起使用的电桥电路的实施例的示意图。图7是远端头段的替代实施例的侧面剖视图,该远端头段包括顶端电极和对应变与应力敏感的接触力传感器。图7A是适于和图7的远端头段的实施例一起使用的、可偏转的中间段的实施例的末端剖视图。图7B是沿B-B线截取的图7的远端头段的实施例的末端剖视图。图7C是沿C-C线截取的图7的远端头段的实施例的末端剖视图。图8是图7的接触力传感器的实施例的透视图。图9是曲线图,比较了有荷载和无荷载情况下,图7的接触力传感器的应变传感器随时间变化的方波激励的电压输出。图10是具有方波输入滤波器(高通)和整流器/直流电压均衡器的传感器驱动电路的实施例的示意图。图11是具有多个磁性涂层的接触力传感器的替代实施例的透视图。
9值之下,以免应变计自热。例如,输入500Ω应变计的5VDC电压预计不会产生自热,但输入相同应变计的10VDC电压会产生发热问题。为了提高应变计的应变测量灵敏度,可以的占空比在高压(如100VDC)下对应变计进行脉冲驱动(具有低占空比的方波波形),以限制输入应变计的平均功率。应变计适于通过产生与所施加应变相关的电阻变化来测量所连接的辐条110的应变。电阻变化继而会改变电桥的电压输出(E = IXR),因此给应变计较高的输入电压可提高其输出灵敏度。本如领域普通技术人员所了解,根据所用应变计的类型,应变计可能需要补偿电阻器。远端段15也包括位于力传感器100和可偏转中间段14之间的一短截连接管53。 在图3所示实施例中,连接管53具有单一管腔,以允许顶端电极导线40和冲洗管38进入顶端电极17。连接管53还容纳有电磁位置传感器48,其中传感器的电缆46从传感器向近端延伸穿过连接管。连接管53还允许穿过来自力传感器100内部的接合端子156的主导线160。连接管53的单一管腔允许这些部件根据需要从其在中间段14内的相应管腔向其在顶端电极17内的位置重新取向。应当理解,本发明的一个目的是在远端段15内提供可变形(产生应变)的适形段 (例如力传感器100)和刚性非适形段(例如远端加强管57),非适形段具有刚性并限制任何变形,使得适形段吸收由作用在顶端电极17上的力向量产生的几乎所有应变能。力传感器100和远端加强管57应由相同材料或至少具有相似热膨胀系数的材料制成,以免因各材料热膨胀系数不同而产生热滞后(因材料热膨胀和收缩速率不同引起的应变)。在一个实施例中,远端加强管为厚0. 003-0. 006英寸、长0. 125-0. 250英寸的薄壁刚性管57。该管通过(例如)压力配合或粘结剂接合于力传感器100近端的内径或外径。在图3所示实施例中,管57附接在力传感器100的内径上。可以形成垂直于管57的纵轴线的孔,以便于到环电极的走线。如图3所示,顶端电极17限定与力传感器的纵轴线114对齐的纵轴线180。顶端电极17具有穹形保护远端182和具有大致平坦的表面的近端184,在该大致平坦的表面内形成接纳力传感器的直杆116的中心孔186。孔186具有比直杆长度LB小的深度,以使得顶端电极17和主体102及力传感器的臂110之间存在间隙或空间190。间隙190的用意在于让顶端电极更自由,并可在直杆116远端以更大的转矩移动,从而更好地感测三个维度施加在顶端电极上的力。一短截薄的、流体密封的、柔性弹性管即密封件192在顶端电极和力传感器主体之间延伸,以有助于将顶端电极17保持在直杆116上,并使间隙190内没有碎屑。具有径向横分支198的冲洗通道194与孔180同轴,以允许冲洗管38递送的流体经多个径向口 199流到顶端电极外面。顶端电极17的近端也包括盲孔201,在该盲孔中锚固顶端电极导线40。顶端电极导线40经力传感器100内的孔1 之一通往顶端电极17。如图2A所示,顶端电极导线穿过中间段14的第一管腔30和导管主体12的中央管腔18,然后到达控制手柄16。传感器的主导线160也穿过中间段14的第一管腔30和导管主体12的中央管腔18,然后到达控制手柄16,并在手柄处连接到电桥电路170。导管远端段可包括安装在连接管53上的环电极21,该连接管将力传感器100和中间段的管19的远端桥接在一起,如图3所示。环电极21可由任何合适的固体导电材料制成,例如钼或金,优选为钼和铱的组合物。环电极可用胶等安装到连接管53上。作为另外一种选择,可通过用导电材料,如钼、金和/或铱涂覆管53来形成环电极。可采用溅射、离子束淀积或等同技术来涂敷涂层。可根据需要改变管53上环电极的数量。环可以为单极或双极。每个环电极连接到相应的导线40上,该导线可穿过中间段14的第一管腔30和导管轴12的中央管腔18。应当理解,可根据需要为穿过导管(包括导管主体12和/或中间段)的任何线和电缆提供绝缘或保护鞘管。本发明的导管的一个替代实施例在图7、7A、7B和7C中示出,在这些图中,类似的构成要素用相同的附图标记描述。导管在远端段15内装配有力传感器200,该力传感器包括中空圆柱形主体或外壳202和多个嵌入的应变感测受拉构件204,用来通过感测施加到顶端电极17的三维力向量来监测主体202的应变。参照图8,主体包括具有圆形横截面的壁206、近端208和具有内远端210的环锯远端或外远端209。外长度在近端208和外远端 209之间延伸。内长度在近端208和内远端210之间延伸。壁在近端和内远端之间具有均勻厚度T。壁具有外周表面212和限定内部空间216的内周表面214。壁由多个轴向通道或通孔218形成,这些通道或通孔彼此等距地径向布置在纵轴线220周围。每个轴向通道 218均横跨内长度,并且在近端208和内远端210内限定相应的开口 222。参照图7,力传感器的外远端209接纳顶端电极的近端底脚230。顶端电极和力传感器的尺寸使得力传感器200的外远端209邻接顶端电极的近端周边末端232,并使底脚 230的近端邻接力传感器的内远端210,以使得施加到顶端电极17的力向量在力传感器的外远端和内远端处被传递到力传感器200。延伸穿过每个通道218的是小直径的应变感测受拉构件234(本文中“受拉构件” 和“线”互换使用),例如,多晶铜线之类的小直径导电线。在所示实施例中,每个应变传感器线在力传感器主体的内远端处具有U形弯曲,为便于讨论,该弯曲确定为第一线部分23 和第二线部分234b。每个开口 222在主体的内远端210处设置有面朝里的凹口或凹槽236, 以使线不被夹在底脚230和力传感器的内远端210之间。同样,每个通道的近端附近设置有通孔238,以使得线不被夹在力传感器200和可偏转中间段14的管19的周向开槽的远端之间。在一个实施例中,外壳202具有约0.095英寸的外径。主体的壁206具有约 0.025-0.0 英寸的厚度。轴向通道218具有约0.010-0. 014英寸的直径。每个应变感测受拉构件234都具有约0. 004-0. 006英寸的直径,并且“工作”应变长度为约0. 10-0. 20英等。每个第一线部分23 的区段240延伸穿过通道218,并且其子区段设置有磁性涂层、膜或层对4。包含磁性膜244的区段通过粘合剂或接合剂246嵌入通道内。如本领域普通技术人员所了解,磁性膜244的组合物为受控的,以使其具有对应变敏感的特性。沉积在线上的高渗透性膜对线的电感起决定作用,以便通过测量线的电感或损耗监测其磁特性。 在小直径线上均勻电镀磁性膜的能力使得磁性膜容易被驱动至饱和。从而,可以监测磁性膜内的损耗。由于膜的磁特性对应变敏感,因此线可以感测应变的变化。由于应变感测线是不动的,因此它们被嵌入在通道内。又如本领域普通技术人员所了解,每个应变感测线均利用线内电流产生的磁场。该磁场作用到周向连续的磁涂层形状。然而,外部磁场作用到另一种轴向或直径方向不连续涂层的形状。这些形状的自退磁效应会显著减少这些外部磁场的效应。因此,通过将膜图案化成小的轴向分离的区段,可以几乎消除因通常遇到的外部磁场产生的效应而不影响该电流产生的磁场。沉积在线周围的磁性膜的长度确定了传感器的有效应变区域。在一个实施例中,该长度为约0.18-0. 20英寸。合适的应变传感器可得自 Sensortex, Inc. (KennettSquare,Pennsylvania)。在施加并干燥/固化将区段嵌入通道内的粘合剂的过程中,每个延伸穿过通道 218的区段240被用所施加的张力(如1000微米的应变)加入预应变(本文中“预应变” 和“预应力”可互换使用)。对线的预应变用来除去信号死区并增加份额(即传感器信号跨越长度)。在每个传感器线上加有受控的均勻张力,以感测力传感器内的对称性。力传感器内多根线的数量可在约2和10之间的范围内。在所示实施例中,在力传感器的纵轴线220 周围以约90度设有四根线。在所示实施例中,每个应变传感器线的第一部分23 延伸穿过导管主体的中央管腔18、可偏转中间段14的第一管腔30和相应的力传感器200的通道218。每个应变传感器的第二部分234b延伸穿过力传感器200的内部空间216、可偏转中间段14的第一管腔 30和导管主体12的中央管腔18。力传感器主体的变形导致应变传感器204的应变幅度变化。力传感器200的每个应变传感器被连接到电源和合适的电路和/或处理器,这些电源和电路和/或处理器通过线提供AC电流并接收其电压输出,以检测电感或损耗,从而确定施加到顶端电极的三维力向量。本领域普通技术人员应当理解,力向量在作用于顶端电极时被传递到力传感器的圆柱形主体,这使得主体略微变形,从而向应变传感器施加应变上的改变。各应变传感器的小尺寸和对称外形使得磁性膜能容易地驱动至具有不过分大的电流电平的饱和状态。所得的磁滞损耗决定了应变传感器的阻抗,并且具有高的应力相依性。通过测量线内的电感或磁滞损耗监测其磁特性。该损耗为关于电流的非线性响应曲线,并且产生可用模拟或数字信号提取电路检测的高频电压尖峰(参见图9)。主体可由具有生物相容性、温度稳定性和能经受应力与应变变形的足够刚性的任何材料构成,包括聚醚醚酮(PEEK)、自加强聚亚苯基、聚苯砜或液晶聚合物。将应变传感器粘结到通道内的粘合剂应具有与主体结构材料相当的弹性模量和热膨胀系数。如图7和8所示,每个应变传感器线的远端和近端是可接近的,以向控制器输入电流并从控制器输出电压。该控制器适于从远端段15接收信号并向其发送信号,并处理这些输入和输出的电信号,以标测、消融和/或通过微处理器感测力,其中微处理器应用具有力感测解决方案的程序算法。图10说明力传感器200的驱动电路的实施例,其中力传感器采用由运算放大器 152 (驱动电压为约1-5伏并且均方根电流为约200-800mA)放大的方波振荡器150 (频率输入范围为约5-50KHZ)驱动。该电路也包括充当高通滤波器(过滤大于15KHz的信号)的第二运算放大器154,该放大器可消除驱动频率下由传感器线电阻和磁涂层的电感分量组成的大电压分量。当传感器产生应变时,电感略微变化,但功耗因素的变化非常大。直流输出电压随着传感器应变增加而减小。在本发明的一个替代实施例中,每根线上设有多个传感器(磁性膜)。然而,应当理解,测量跨越每个传感器的电压,从而得到每个传感器端处的线连接点。单线多传感器配置导致线较少,因为只有一个电流输入,但是一根线(包括38号线)上接合多个连线在测量应变时可能不如采用多个双线传感器可靠或性价比高。图11示出了单线多传感器配置的实施例,例如,具有三个磁性膜244从而产生三个力传感器200a、200b和200c的单铜线, 其中每个传感器提供相应的输出输出a、输出b、输出C。传感器工作所需的电压、电流和频率分别在约1-5伏、200_800mA(方波形)和约 5KHz-50KHz的范围内。当传感器应变增加时,在每个方波开始和结尾处的所得尖峰减小 (参见图9)。应变传感器电压输出滤波电路与基于高速运算放大器的开环或闭环峰值脉冲检测电路结合,可以将传感器应变电压峰值转化为稳定的直流电压输出(参见图10)。应当理解,图7-9的导管的实施例也可包括在中间段14和力传感器200之间的连接管53,其中电磁位置传感器48装入在力传感器200的近侧。传感器48的电缆46可穿过中间段14的第一管腔30,然后到达控制手柄16。已参照本发明的某些示例性实施例进行了以上描述。本发明所属技术领域内的技术人员应认识到,在不有意脱离本发明的原则、精神和范围的前提下,可以对所述结构进行更改和修改。应当理解,附图未必按比例绘制。因此,以上描述不应被理解为只涉及附图中所描绘和示出的具体结构。相反,以上描述应被理解为与以下涵盖其最完整和最清楚范围的权利要求书一致,并且支持该权利要求书。


本发明提供了远端具有接触力感测功能的标测和消融导管,所述导管包括导管主体、可偏转段和远端头段,所述远端头段具有顶端电极和用于感测作用于所述顶端电极的三维接触力向量的接触力传感器。接触所述顶端电极的所述接触力传感器具有主体,并且具有至少一个传感器,所述至少一个传感器具有对于力向量导致的所述主体的变形有反应的电特性。所述传感器适于接收电流并输出指示所述电特性变化的电信号。在一个实施例中,所述传感器为对所述力传感器的所述主体的至少一部分的拉伸和压缩有反应的应变计,并且所监测的所述应变计的所述电特性为电阻率。在另一个实施例中,所述传感器对所述主体的至少一部分的应变和应力有反应,并且所监测的所述电特性为电感或磁滞损耗。



查看更多专利详情