早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

制备和储存活化的、成熟树突细胞的体系和方法

  • 专利名称
    制备和储存活化的、成熟树突细胞的体系和方法
  • 发明者
  • 公开日
  • 申请日期
  • 优先权日
  • 申请人
  • 文档编号
  • 关键字
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:制备和储存活化的、成熟树突细胞的体系和方法制备和储存活化的、成熟树突细胞的体系和方法发明背景癌症研究已经取得了明显进步,这些进步使得许多类型的恶性肿瘤的死亡率稳定下降。这种死亡率的下降已经受到早期检测的改进、先进的外科手术技术和新治疗干预的应用的影响。鉴于在降低癌症相关死亡率中的成功,研究已经转向了以针对癌症的新型靶向治疗为中心,其中疫苗的开发已经处于最前沿。疫苗在降低由病原体导致的死亡率中是高度有效的,这是因为它们激活免疫系统和赋予外源抗原免疫性的能力。不仅有效地接种疫苗有助于降低死亡率,而且疫苗引起长期的免疫性,该免疫性保护免受多发性感染。正是疫苗发展免疫性的这种能力最初引起开发癌症疫苗的兴趣。显然,所有形式的癌症疫苗在诱导针对为靶选择的肿瘤抗原的免疫应答中已经显示至少一定程度的成功。 虽然癌症疫苗在用作单一疗法时,尤其是在晚期疾病情况中,一般是令人失望的(Terrando 等,2007,Vaccine 25,4-16 ;Burgdorf 等,2008,Oncol. Rep. 20 (6),1305 - 1311),但最近的研究表明树突细胞(DC)疫苗可能影响患者的生存。当前,用于免疫治疗的方法通常结合体外刺激的抗原呈递细胞(APC),其中DC前体在从患者收集后立即进行培养,然后负载抗原的DC在收获后被尽快输注到患者中。这种方法造成了时间约束,其不仅限制DC的潜在治疗用途,而且还使免疫治疗过程中在多个时间点从患者提取产物成为必要。除了抗原呈递之外,据认为DC在成熟后通过以细胞因子和趋化因子的方式产生各种信号分子,能进一步影响免疫应答。然而,之前的DC免疫治疗方法并不利用成熟的DC。 此外,之前关于DC的成熟的工作并不充分最佳化成熟过程以利用DC信号产生。因为负载抗原的、成熟DC已经加工了抗原,并且具有将抗原递呈到免疫细胞的能力,这些细胞在活化后不仅能快速产生抗原特异性免疫应答,而且,它们也能产生信号,以进一步实现免疫应答。毫无疑问,负载抗原的、成熟DC的有效冷藏能使方法快速产生功能上有效的细胞,用于免疫治疗。这种细胞的冷藏尚未被有效证明。因此,在本领域中,对以保持新产生的DC的有效抗原呈递和信号分泌特征的方式冷藏活化的DC的有效和定向的方法存在长期的需求。本发明满足该需要。发明内容本发明包括产生负载抗原的、活化的树突细胞(DC)以用于免疫治疗的方法,所述方法包括装载至少一种抗原到DC中;用至少一种TLR激动剂活化所述DC ;冷藏(或深低温保藏,cryopreserve)所述DC ;和解冻(或融化)所述DC ;其中所述DC产生有效量的至少一种细胞因子,以产生T细胞应答。在一个实施方式中,抗原是肿瘤抗原。在另一实施方式中,抗原是微生物抗原。在再一实施方式中,TLR激动剂是LPS。在再一实施方式中,冷藏包括在约-70°C或更低的温度下冷冻所述DC。在再一实施方式中,解冻后DC的回收和存活率大于或等于约70%。在再一实施方式中,解冻后DC的回收和存活率大于或等于约80%。在再一实施方式中,DC被冷藏至少约一周。在再一实施方式中,细胞因子是IL12。在再一实施方式中,DC显示杀伤作用,由此所述DC能够裂解靶向的癌细胞。本发明还包括在哺乳动物中引起免疫应答的方法,所述方法包括将之前冷藏的组合物施用到需要其的哺乳动物中,所述组合物包括负载抗原的、活化的DC,其中所述DC负载抗原,并在冷藏前被活化。
在一个实施方式中,抗原是肿瘤抗原。在另一实施方式中,抗原是微生物抗原。在再一实施方式中,TLR激动剂是LPS。在再一实施方式中,冷藏包括在约-70°c或更低的温度下冷冻所述DC。在再一实施方式中,解冻后DC的回收和存活率大于或等于约70%。在再一实施方式中,解冻后DC的回收和存活率大于或等于约80%。在再一实施方式中,DC被冷藏至少约一周。在再一实施方式中,细胞因子是IL12。在再一实施方式中,DC显示杀伤作用,由此所述DC能够裂解靶向的癌细胞。
本发明还包括用于在哺乳动物中引起免疫应答的可保存组合物,该组合物包括 负载有至少一种抗原的DC ;其中所述DC已通过暴露于至少一种TLR激动剂而被活化;和, 其中所述DC产生有效量的至少一种细胞因子,以产生T细胞应答,无论所述组合物是否已经被冷藏。
在一个实施方式中,抗原是肿瘤抗原。在另一实施方式中,抗原是微生物抗原。在再一实施方式中,TLR激动剂是LPS。在再一实施方式中,组合物在约-70°C或更低的温度下被冷藏。在再一实施方式中,解冻后DC的回收和存活率大于或等于约70%。在再一实施方式中,解冻后DC的回收和存活率大于或等于约80%。在再一实施方式中,组合物被冷藏至少约一周。在再一实施方式中,细胞因子是IL12。在再一实施方式中,DC显示杀伤作用,由此所述DC能够裂解靶向的癌细胞。附图
简介
为了阐释本发明,在附图中描述了本发明的某些实施方式。然而,本发明并不限于附图中所描述的实施方式的精确排列和手段。
图I比较常规DC (vac-DC)和ICAIT-DC产生细胞因子和趋化因子组,以及由此这些细胞能够裂解乳腺癌细胞系的杀伤作用。
图2描述常规成熟的DC和ICAIT-DC均成功敏化针对肿瘤抗原的T细胞,但仅 ICAIT-DC调节T细胞真正识别表达HER-2的肿瘤。
图3——包括图3A和3B——描述新鲜的ICAIT-DC对比冷藏并解冻的ICAIT-DC的可比较的存活率和回收率。利用锥虫蓝排除,在冷藏前和解冻并洗涤(通过离心)冷藏的细胞后立即测定冷藏的ICAIT DC的存活率和回收率。图3A描述二批处理组的三个单例, 而图3B描述二批处理组的两个单例。存活率在新鲜制备和冷藏的DCl中是具有可比性的。 冷藏的DCl的回收率通常在80-90%之间,比新鲜制备的DCl好得多,这是由于通过收获新鲜制备的DCl而损失了细胞。
图4——包括图4A-4F——描述DCl从冷藏解冻后优异的IL12生产水平。信号3 的继续产生(IL12)通过ELISA分析来测量。图4A描述在新鲜和冷藏的细胞因子介导的 DC(CMDC)中的IL12的产量远远少于在新鲜DCl和冷藏的DCl中观察到的IL12的产量。图 4B描述在冷藏前、解冻后两小时后和解冻后12小时时,在DCl中的IL12的产量。图4C-4F 描述冷藏的DCl与从冷藏的单核细胞制备的DCl的IL12产量的比较。
图5描述在冷藏的DCl中与来自冷藏的单核细胞的DCl中测量的IFN Y水平的比较。纯化的异源⑶4细胞(I X IO6/孔)的两个样品与冷藏的TLR激动剂刺激的DC (I X IO5/ 孔)共同培养,与从冷藏的单核细胞制备的DCl比较。9天以后,收获T细胞并在涂有抗CD3 和抗⑶28抗体的板上再刺激。24小时后,在上清液中分析IFNy水平(由T细胞产生)。
图6描述CD4+CD25+T细胞在不成熟的、但不是DCl的树突细胞存在下抑制反应淋巴细胞增殖。2. 5 X IO5个CFSE标记的未分级的(unfractionated)反应淋巴细胞与IXlO5 个不成熟树突细胞(iDC)、成熟的树突细胞——利用IFN- Y /LPS (LPS活化的DC)、或成熟的树突细胞——利用常规细胞因子混合物(CMM),共同培养5天。I. 25X IO5个储存的、分级的 ⑶4+⑶25+T细胞(U如所指明地被包括在内。针对⑶4-级(gated)和⑶8-级的T细胞显示反应淋巴细胞增殖。显示的数据代表10个试验。也显示⑶4-阳性应答细胞在T,egs和在共同培养前用LPS短暂处理(15分钟)的不成熟树突细胞的存在下的增殖。
图7——包括图7A-7D——描述由不依赖于IL-6和IL-12的可溶因子产生的DCl 树突细胞对Treg功能的抑制。图7A描述与I X IO5个不成熟的树突细胞或LPS活化的树突细胞共同培养的I. 25X IO5个分选的、纯化的I;egs。显示24小时后凋亡标记膜联蛋白-V 和7-AAD 24的表达。柱状图总结同时表达两个标记(+/+)、仅表达膜联蛋白-V (+/_)、仅表达7-AAD(-/+)、或均不表达(-/_)的细胞的百分比。图7B描述I. 25X IO5个分选的、纯化的Iregs与2. 5 X IO5个CFSE标记的未分级的反应淋巴细胞在I X IO5个不成熟的或LPS活化的树突细胞存在下共同培养,如所指明的。此外,I X IO5个不成熟的或LPS活化的树突细胞被加入到放直在培养孔(culturewell)中的半透性Tran.swell fl旲中,如所指明的。图7C 描述I. 25 X IO5个分选的、纯化的T,egs与2. 5 X IO5个CFSE标记的未分级的反应淋巴细胞和 I X IO5个LPS活化的树突细胞在5 μ g/mL中和抗-IL-6或抗-IL-12抗体存在下共同培养。 显示的数据代表每一实例中至少3个单独的试验。图7D描述Tregs或CFSE标记的未分级的反应淋巴细胞,其在500 μ L培养基和加入LPS (I X IO6个细胞/mL)后约10小时取自LPS 活化的树突细胞培养物的500 μ L培养基中培养。24小时之后,这些“处理”的群体用于以如所指明的常规比例(I:2,Tregs:应答细胞)进行共同培养。数据代表2个单独的试验。
图8——包括图8Α和8Β——描述阻抑因子⑶4+⑶25+Τ细胞在DCl树突细胞存在下分泌效应细胞因子。图8Α描述与2. OX IO5个不成熟的或LPS活化的树突细胞结合的 2. 5Χ105个分选的CD4+CD25+(I;eg)或CD4+CD25_(Teff)T细胞。在第5天收获上清液,并用ELISA测量上清液中存在的IFN- Y的量。在第5天,一些培养样品被透化,并且,通过流式细胞仪检测细胞内IFN- Y。34. 4%的⑶4T细胞在细胞内表达IFN- y (N=3)。图8B描述 I. 25X IO5个⑶4+⑶25+T细胞,其与I X IO5个不成熟的或LPS活化的DC共同培养。中和抗-IL12抗体(5 μ g/mL)包含在一些样品中。在48小时时,收集细胞、透化,并且,通过细胞内染色检测T-bet和FoxP3的细胞内表达。显示的数据被分级为(gated)⑶4-阳性细胞 (N=3)。
详细描述
本发明涉及开发和冷藏成熟的、负载抗原的DC,所述DC由Toll样受体激动剂活化,以诱发临床上有效的免疫应答,优选在疾病过程的早期中使用时诱发临床上有效的免疫应答。本发明的DC通过产生细胞因子和趋化因子能够调向强的Thl细胞应答,并且还能够诱导肿瘤细胞凋亡。本发明的DC开发技术也提供平台,来靶向新的分子和癌干细胞,其能消除具有高转移潜力的细胞。本发明也涉及以在解冻后保持它们呈递抗原以及产生各种细胞因子和趋化因子的潜能和功能性的方式来冷藏这些活化的DC。
定义
如本文中所使用的,以下每一术语具有与其在该部分有关的含义。
冠词“一(a和an)”在本文中用来指一个或一个以上(即,至少一个)该冠词的语法对象。举例来说,“一个元件(an element) ”意为一个或一个以上的元件。
术语“约”将被本领域的技术人员所理解,并且,将在一定程度上根据其被应用的上下文而变化。
如本文中所使用的,术语“抗体”是指免疫球蛋白分子,其能够特异性结合抗原上的特定表位。抗体可以是衍生自天然源或来自重组源的完整免疫球蛋白,还可以是完整免疫球蛋白的免疫活性部分。抗体通常是免疫球蛋白分子的四聚物。本发明中的抗体可以以各种形式存在,包括例如多克隆抗体、单克隆抗体、Fv, Fab和F(ab)2以及单链抗体和人源化抗体(Harlow 等,1988 ;Houston 等,1988 ;Bird 等,1988)。
如本文中所使用的,术语“抗原”或“ag”被定义为引起免疫应答的分子。这种免疫应答可以包括抗体产生或者特定免疫活性(感受态,competent)细胞的活化,或者两者。 本领域的技术人员将会理解,任何高分子——事实上包括所有蛋白质或肽——均可用作抗原。此外,抗原可衍生自重组或基因组DNA。本领域的技术人员将理解,包括编码引起免疫应答的蛋白质的核苷酸序列或部分核苷酸序列的任何DNA因而编码“抗原”,其与本文中使用的术语一样。此外,本领域的技术人员将理解,抗原不必仅仅由基因的全长核苷酸序列编码。显而易见的是,本发明包括、但不限于使用一个以上基因的部分核苷酸序列,以及这些核苷酸序列以各种组合排列,以引起期望的免疫应答。另外,技术人员将理解,抗原根本不必由“基因”编码。显而易见的是,抗原可以通过合成产生或者可以衍生自生物学样品。这种生物学样品可以包括、但不限于组织样品、肿瘤样品、细胞或生物流体。
“抗原呈递细胞” (APC)是能够活化T细胞的细胞,其包括、但不限于单核细胞/巨噬细胞、B细胞和树突细胞(DC)。
术语“树突细胞”或“DC”是指淋巴或非淋巴组织中发现的形态学上相似的细胞类型的不同群体的任何成员。这些细胞的特征在于其不同的形态和高水平表面MHC-II级表达。DC可分离自一些组织源。DC具有高的敏化MHC限制的T细胞的能力,并且,非常有效地原位呈递抗原到T细胞。抗原可以是自体抗原和外源抗原,所述自体抗原在T细胞发育和耐受过程中被表达,所述外源抗原在正常免疫过程中存在。
如本文中所使用的,“活化的DC”是已经暴露于Toll样受体激动剂的DC。活化的 DC可以或者可以不负载有抗原。
如本文中所使用的,术语“成熟的DC”被定义为这样的树突细胞,其表达分子,包括高水平的MHC II级、⑶80(B7. I)和⑶86 (B7. 2)。相反地,不成熟树突细胞表达低水平的 MHC II级、⑶80(B7. I)和CD86 (B7. 2)分子,并仍能捕获抗原。
“负载抗原的APC”或“抗原脉冲的(antigen-pulsed) APC”包括APC,其被暴露于抗原并被抗原活化。例如,APC可以成为体外负载的Ag,例如在抗原存在下的培养期间。APC 也可以通过暴露于抗原在体内负载。“负载抗原的APC”以如下一种或两种方式被常规制备 ⑴小肽片段,称为抗原肽,被直接“脉冲”到APC的外面;或⑵用全蛋白质或蛋白质颗粒温育APC,然后通过APC来消化这些蛋白质。这些蛋白质被APC消化成小肽片段,并最终运输并呈递到APC表面上。此外,负载抗原的APC也可以通过将编码抗原的多核苷酸引入到细胞中来产生。
如本文中所使用的,术语“自身免疫性疾病”被定义为由自身免疫应答导致的病症。自身免疫性疾病是对自体抗原的不当或过度应答的结果。自身免疫性疾病的实例包括、 但不限于阿狄森病、局限性脱发、强直性脊柱炎、自身免疫性肝炎、自身免疫性腮腺炎、克罗恩病、糖尿病(I型)、贫养表皮水泡症、附睾炎、肾小球性肾炎、格雷夫斯病、格-巴二氏综合征、桥本氏病、溶血性贫血、系统性红斑狼疮、多发性硬化症、重症肌无力、寻常天庖疮、牛皮癣、风湿热、类风湿性关节炎、肉样瘤病、硬皮病、斯耶格伦氏综合怔、脊椎关节炎、甲状腺炎、血管炎、白斑、粘液性水肿、恶性贫血、溃疡性结肠炎等等。
如本文中所使用的,术语“自体的”意指衍生自同一个体的任何材料,稍后该材料将被重新引入到该个体。
如本文中所使用的,术语“癌”被定义为以异常细胞的快速和不受控制的生长为特征的疾病。癌细胞可以局部扩散或者通过血流和淋巴系统扩散到身体的其它部分。各种癌症的实例包括、但不限于、乳腺癌、前列腺癌、卵巢癌、宫颈癌、皮肤癌、胰腺癌、结肠直肠癌、 肾癌、肝癌、脑癌、淋巴瘤、白血病、肺癌等等。
如本文中所使用的,术语“冷藏的”或“冷藏”是指被重新悬浮在低温培养基 (cryomedium)中并在大约-70°C或更低的温度下冷冻的细胞。
如本文中所使用的,术语“低温培养基”是指任何这样的培养基,其混合有细胞样品,被制备用于冷冻,以便细胞样品中的至少一些细胞可以被回收并在解冻后保持存活。
“供体抗原”是指由待被移植到受体的供体组织表达的抗原。
“受体抗原”是指对供体抗原的免疫应答的靶标。
如本文中所使用的,“效应细胞”是指介导针对抗原的免疫应答的细胞。效应细胞的实例包括、但不限于T细胞和B细胞。
如本文中所使用的,“内源的”是指来自或产生自生物体、细胞、组织或系统内部的任何物质。
如本文中所使用的,术语“外源的”是指从生物体、细胞、组织或系统引入或产生自其外面的任何物质。
如本文中所使用的,术语“表位”被定义为抗原上的小化学分子,其能引起免疫应答——包括B和/或T细胞应答。抗原可以具有一个或多个表位。大部分抗原具有许多表位;即,它们是多价的。通常,表位的大小为大约5个氨基酸和/或糖。本领域的技术人员理解,通常,总体三维结构——而不是分子的具体线性序列——是抗原特异性的主要标准, 因而使得表位彼此区分开。
如本文中所使用的,术语“辅助细T细胞”被定义为效应T细胞,其主要功能是促进其它B和T淋巴细胞和或巨噬细胞的活化和功能。大部分辅助细T细胞是CD4T细胞。
如本文中所使用的,“免疫原”是指能够在哺乳动物中刺激或诱导体液抗体和/或细胞介导的免疫应答的物质。
如本文中所使用的,术语“免疫球蛋白”或“Ig”被定义为用作抗体的一类蛋白质。 这类蛋白质中包括的五个成员是IgA、IgG、IgM、IgD和IgE。IgA是初级抗体,其存在于身分泌物中,如唾液、眼泪、母乳、胃肠分泌物和呼吸道和生殖泌尿道的黏液分泌物。IgG是最常见的循环抗体。IgM是主要的免疫球蛋白,其在大部分哺乳动物的初次免疫应答中产生。 它在凝集、补体固定和其它抗体应答中是最有效的免疫球蛋白,并且,在防御细菌和病毒中是重要的。IgD是没有已知抗体功能的免疫球蛋白,但是,其可以用作抗原受体。IgE是通过在暴露于变应原后引起介体从肥大细胞和嗜碱性粒细胞释放而介导速发型过敏的免疫球蛋白。
如本文中所使用的,术语“主要组织相容性复合体”或“MHC”被定义为特定的基因簇,其中的许多编码涉及抗原呈递的、进化上相关的细胞表面蛋白质,这是其中组织相容性的最重要的决定因素。I类MHC或MHC-I主要在向⑶8T淋巴细胞的抗原呈递中起作用。II 类MHC或MHC-II主要在向⑶4T淋巴细胞的抗原呈递中起作用。
如本文中所使用的,术语“调节”意指生物状态的任何变化,即,提高、降低等等。
如本文中所使用的,术语“多肽”被定义为氨基酸残基链,通常具有限定的序列。如本文中所使用的,术语多肽相互包括术语“肽”和“蛋白质”。
如本文中所使用的,术语“自体抗原”被定义为由宿主细胞或组织表达的抗原。自体抗原可以是肿瘤抗原,但在一些实施方式中,自体抗原在正常细胞和肿瘤细胞均表达。技术人员将会理解,自体抗原可以在细胞中被过表达。
如本文中所使用的,“基本上纯化的”细胞是这样的细胞,其基本上不含其它细胞类型。基本上纯化的细胞也指这样的细胞,所述细胞已从其天然存在状态中与之天然相关的其它细胞类型分离。在一些情况中,基本上纯化的细胞群是指同质细胞群。在其它情况下,该术语仅指这样的细胞,所述细胞已从其天然状态中与之天然相关的细胞分离。在一些实施方式中,细胞在体外培养。在其它实施方式中,细胞未在体外培养。
如本文中所使用的,术语“T细胞”被定义为胸腺衍生的细胞,其参与各种细胞介导的免疫反应。
如本文中所使用的,术语“B细胞”被定义为衍生自髓和/或脾的细胞。B细胞可以发展成产生抗体的浆细胞。
如本文中所使用的,术语“Toll样受体”或“TLR”被定义为在先天免疫系统中发挥作用的一类蛋白质。TLR是跨单膜的、非催化受体,其识别衍生自微生物的、结构上保守的分子。TLR在结合到配体后激活免疫细胞应答。
如本文中所使用的,术语“Toll样受体激动剂”或“TLR激动剂”被定义为这样的配体,其结合TLR以激活免疫细胞应答。
如本文中所使用的“治疗有效量”是足以为施用组合物的哺乳动物提供有益作用的组合物的量。
如本文中所使用的,术语“疫苗”被定义为这样的物质,其用于在施用给动物,优选哺乳动物,更优选人之后弓I起免疫应答。
范围在该公开内容中,本发明的各个方面可以以范围的形式程现。应该理解,以范围形式进行描述仅仅是为了方便和简洁,而不应该被解释为对本发明范围的僵硬限制。 因此,对范围的描述应该被理解成具体公开了所有可能的亚范围以及该范围内的单个数值。例如,对范围的描述,如从I到6,应该被认为具体公开了这样的亚范围,如I到3、1到 4、I至Ij 5、2到4、2到6、3到6等,以及该范围内的单个数值,例如,1、2、2· 7、3、4、5、5· 3和6。无论范围的宽度如何,这均适用。
描述
如在本文中所考虑的,本发明提供用于产生和冷藏具有如下优异功能的DC的方法产生较强信号给T细胞,因而产生更有效的DC基抗肿瘤疫苗。通过选择性地冷藏这种细胞,样品可以被储存和解冻,用于稍后使用,从而在疫苗生产过程中减少对重复提取和冲洗过程的需要。这些方法也可以被用于直接靶向涉及致癌信号传导通道和癌干细胞(CSC) 的分子。
本发明包括成熟的、由Toll样受体激动剂活化的、负载抗原的DC,其诱导临床上有效的免疫应答,尤其在疾病过程的早期中使用时。本发明的DC产生期望水平的细胞因子和趋化因子,而且还能够诱导肿瘤细胞凋亡。
本发明还显示,TLR配体不仅活化呈递细胞,而且还抑制用于限制适应性应答的调节细胞。在某些实施方式中,通过多个Toll样受体——包括TLR-2、TLR-4、TLR-8和TLR-9 的信号传导被显示通过免疫调节性⑶4+⑶25+Foxp3+T细胞(在本文中被称为T,egs)进行反向阻抑。在本文中显示,TLR-4-活化的树突细胞不仅抑制1^8对反应淋巴细胞的作用,而且表现出使调节子本身转换成产生IFN-Y的效应子。
本发明还涉及以这样的方式对这些活化的DC进行冷藏保持其在解冻后呈递抗原以及其产生各种细胞因子和趋化因子的潜能和功能性,以便冷藏和随后解冻的、活化的 DC像新鲜收获和活化的DC —样在临床上是有效的。
基于DC的免疫治疗
DC衍生自用作抗原呈递细胞(APC)的多能单核细胞。DC普遍存在于外周组织中,在外周组织中它们被制备,以捕获抗原。在抗原捕获后,DC将抗原加工成小肽,并向次级淋巴器官移动。正是在淋巴器官中,DC将抗原肽呈递到固有T细胞,从而触发使T细胞分化极性化的信号级联。在暴露之后,DC将结合的抗原分子呈递到MHC I类或II类结合妝并分另1J 活化 CD8.或 CD4+T 细胞(Steinman, 1991, Annu. Rev. Immunol. 9:271 - 296 ; Banchereau 等,1998,Nature 392, 245 - 252 ;Steinman,等,2007,Nature 449:419 -426 ;Ginhoux 等,2007,J. Exp. Med. 204:3133 - 3146 ;Banerjee 等,2006,Blood 108:2655 - 2661 ;Sallusto 等,1999, J. Exp. Med. 189:611 - 614 ;Reid 等,2000,Curr. Opin. Immunol. 12:114 - 121 ;Bykovskaia 等,1999, J. Leukoc. Biol. 66:659 - 666 ;Clark 等,2000,Microbes Infect. 2:257 - 272)。
DC负责诱导、协调和调节适应性免疫应答,其用于协调免疫系统的固有武器 (arm)和适应性武器的效应子之间的交流。这些特征使得DC成为免疫治疗的强有力的候选者。DC具有独特的能力来通过大胞饮和受体介导的内吞作用对环境进行取样(Gerner 等,2008,J.Tmmunol · 181:155 - 164 ;Stoitzner 等,2008,Cancer Immunol. Immunother 57:1665 - 1673 ;Lanzevecchia A. , 1996, Curr. Opin. Immunol. 8:348 - 354 ;Delamarre 等,2 005,Science,307 (5715):1630 - 1634)。
DC也需要成熟信号来增强其抗原呈递能力。DC通过提供另外的成熟信号,如TNF-α、CD40L或钙信号传导剂(Czerniecki等,1997,. J. Immunol. 159:3823 - 3837 ;Bedrosian 等 2000,J. Immunother. 23:311 - 320 ;Mailliard 等,2004,CancerRes. 64,5934 - 5937 ;Brossart 等,1998,Blood 92:4238-4247 ;Jin等,2004, Hum. Immunol. 65:93 - 103),来上调表面分子,如⑶80和⑶86 (也称为第二信号分子)的表达。已经确定,细胞因子——包括TNF- α、IL-I β、IL-6和前列腺素E2 (PGE2)的混合物具有使 DC 成熟的能力(Jonuleit,等,2000,Arch. Derm. Res. 292:325 - 332)。DC 也可以在用抗原脉冲之前通过韩离子载体(ionophore)而成熟。
除了病原体-识另Ij受体,如 PKR 和 MDA-5 (Kalali 等,2008,J. Immunol. 181:2694 - 2704 ;Nallagatla 等,2008,RNA Biol. 5(3) : 140 - 144)之外,DC 还包含一系列受体,被称为Toll样受体(TLR),所述Toll样受体也能够感觉到来自病原体的威胁。当这些TLR被触发时,在DC中就会引起一些活化变化,这些变化导致T细胞的成熟和信号传导(Boullart 等 2008,Cancer Immunol. Immunother. 57 (11) : 1589 - 1597 ; Kaisho 等,2003,Curr. Mol.Med.3 (4) :373-385 ;Pulendran 等,2001,Science 293(5528) : 253-256 ;NapoIitani 等,2005, Nat. Immunol. 6(8) : 769-776)。DC 可以活化并扩张细胞介导的应答的各种武器,如天然杀伤细胞Y-δΤ和α-βΤ细胞,并且,一旦被活化,DC 保持其免疫能力(Steinman, 1991, Annu. Rev. Immunol. 9:271-296 ;Banchereau 等,1998,Nature 392:245-252 ;Reid 等,2000,Curr.Opin. Immunol. 12:114-121 ; Bykovskaia 等,1999, J. Leukoc. Biol. 66:659-666 ;Clark 等,2000,Microbes Infect. 2:257-272)。
信号的DC-产牛
据认为,成熟DC在活化T细胞介导的免疫应答中更有优势(Jonuleit 等,2001, Int. J. Cancer. 93:243 - 25 1 ;Prabakaran 等,2002,Ann. Surg. Oncol. 9:411 - 418 ;Xu 等,2003,J. Immunol. 171:2251 - 2261)。与不成熟 DC 相比,成熟DC能够产生更强的T细胞应答,部分因为特定的细胞因子由成熟DC分泌,其加强更强和更有效的T细胞应答。例如,成熟DC在与CD4T细胞相互作用时产生 IL-12 (Koch 等,1996,J. Exp. Med. 184:741 - 746 ;Heifler 等,1996,Eur. J. Immunol. 26:659 - 668)。分泌 Thl 驱动细胞因子,如 IL-12、IL-18 和 IL-23 的 DC 被称为 I 型极性化 DC 或 DCl (Kalinski,等,1999, Immunol. Today 20:561 - 567 ;Lanzavecchia 等,2000,Science290 (5489):92 - 97)。
由成熟DC产生的细胞因子对T细胞应答具有不同的效应。例如,IL-12是异二聚体细胞因子,其由DC产生,并且在产生分泌IFN- Y的⑶4+和⑶8+T细胞以及增强抗细菌和抗肿瘤应答中是关键的(Gee 等,2009, Inflamm. Allergy DrugTargets 8:40 - 52)。IL-12 也可以抑制卵巢癌(OV-HM)鼠模型中原发性肿瘤以及转移性肿瘤细胞的生长(Tatsumi 等,2001,Cancer Res. 61:7563-7567)。IL-12也可以介导高亲和力抗肿瘤T细胞的产生 (Xu等,2003,J. Immunol. 171:2251 - 2261),从而提高抗肿瘤T细胞功能。DC也产生趋化因子作为第四信号,其导致T细胞的积累并进一步影响T细胞应答(Xiao等,2003,细胞因子 23:126-132)。
DC可以分泌其它细胞因子,所述细胞因子进一步影响T细胞活化。例如,DC可以分泌IL-I、IL-6和IL-23,其活化Thl7细胞。Thl7细胞是最近被定义的促炎T细胞的亚组,其通过产生其信号细胞因子——IL-17——的手段,有助于造成病原体清除和组织炎症 (Kikly 等,2006,Curr. Opin. Immunol. 18:670 - 675)。IL-12 的产生会导致更有效的 Thl 应答,而IL-23的产生会导致Thl7细胞的成熟。实际上,产生IL-12的DC在IL-23存在的情况下会使主要的Thl应答极性化,然而,通过对比,产生IL-23的DC在IL-12不存在的情况下使强的 Thl7 应答极性化(Roses 等,2008, J. Immunol. 181:5120-5127 ;Acosta-Rodriguez 等,2007,Nat. Immunol. 8:639-646)。因此,由于特定DC-分泌的细胞因子对T细胞功能具有如此大的影响,描述成熟DC的细胞因子特性的重要性是潜在T细胞效应子会产生什么的一个更加大得多的量度。因此,成熟DC可以更有效地通过它们占优势的细胞因子产量和随后的对T细胞的信号作用进行表征,而不是仅通过表面分子的表达进行更常规的表征。
负载的(脉冲的)免疫细胞的产生
本发明包括已经被暴露或以其它方式用抗原“脉冲”的细胞。例如,APC,如DC可以例如通过在抗原存在的情况下进行离体培养或通过在体内暴露于抗原而变成体外Ag-负载的。
本领域的技术人员也会容易理解,APC可以以使APC暴露于抗原达足以促使该抗原呈递到APC表面上的时间的方式被“脉冲”。例如,APC可以以小肽片段——被称为抗原肽——的形式暴露于抗原,该小肽片段被直接“脉冲”到APC外面(Mehta-Damani等,1994); 或者,APC可以用完整蛋白质或蛋白质颗粒温育,该蛋白质或蛋白质颗粒随后被APC摄取。这些完整蛋白质通过APC被消化成小肽片段,并最终被携带和呈递到APC表面(Cohen 等,1994)。肽形式的抗原可以通过本文所述的标准“脉冲”技术暴露于细胞。
不希望被任何具体理论所束缚,外源抗原或自身抗原形式的抗原通过本发明的 APC进行处理,以保持抗原的免疫原性形式。抗原的免疫原性形式意味着通过片段化处理抗原,以产生可以被识别的抗原形式,并能刺激免疫细胞,例如T细胞。优选地,这种外源抗原或自身抗原是通过APC被加工成肽的蛋白质。由APC产生的相关肽可以被提取和纯化,以用作免疫原性组合物。由APC加工的肽也可以用于诱导对由APC加工的蛋白质的耐性。
本发明的负载抗原的APC,又称为“脉冲的APC”,通过使APC在体外或体内暴露于抗原而被产生。在APC被体外脉冲的情况下,可将APC铺在培养皿上,并使其以足够的量暴露于抗原足够的时间段,以允许抗原结合APC。实现抗原与APC结合所必需的量和时间可以通过使用本领域中已知的方法或本文中公开的另外方式来确定。本领域技术人员所知的其它方法,例如免疫测定或结合分析可以用于检测暴露于抗原后抗原在APC上的存在。
在本发明的进一步实施方式中,APC可以通过载体进行转染,所述载体允许APC表达特定蛋白质。由APC表达的蛋白质然后可以被加工,并呈递到细胞表面上。然后,转染的 APC可以用作免疫原性组合物,以产生针对载体编码的蛋白质的免疫应答。
如在本文别处所论述的,载体可以被制备成包括特定的多核苷酸,该多核苷酸编码并表达蛋白质,针对该蛋白质期望免疫原性应答。优选地,逆转录病毒载体被用于感染细胞。更优选地,腺病毒载体用于感染细胞。
在另外的实施方式中,可以通过修饰病毒载体使载体靶向APC,以编码由APC上的受体识别的蛋白质或其部分,由此载体对APC受体的占据将引发载体的胞吞作用,允许加工和呈递由病毒载体的核酸编码的抗原。由病毒递送的核酸对于病毒可以是天然的,其在 APC上被表达时编码病毒蛋白质,该病毒蛋白质然后被加工和呈递到APC的MHC受体上。
如在本文中所考虑的,许多方法可用于将多核苷酸转染到宿主细胞。所述方法包括包括、但不限于磷酸钙沉淀、脂质转染、粒子轰击、微注射、电穿孔法、胶体分散体系(即, 高分子复合体、纳米囊、微球、珠和基于脂类的体系——包括水包油乳液、微团、混合的微团12和脂质体)。这些方法在本领域中被理解,并描述在公布的文献中,以便本领域的技术人员能够实施这些方法。
在另外的实施方式中,编码抗原的多核苷酸可被克隆到表达载体中,并且,载体可被引入到APC中,以另外产生负载的APC。将核酸引入到细胞的各种类型的载体和方法在可获得的、公开的文献中有论述。例如,表达载体可通过物理、化学或生物学手段被转移到宿主细胞中。参见,例如,Sambrook 等(2001,MolecularCloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York),和在 Ausubel 等(1997,Current Protocols in Molecular Biology, John ffiley&Sons, NewYork)中。容易理解,包含编码抗原的多核苷酸的表达载体的引入产生脉冲的细胞。
本发明包括用于脉冲APC的多种方法,包括、但不限于使APC负载有蛋白质、cDNA 或mRNA形式的完整抗原。然而,本发明不应该被解释为限于用于脉冲APC的抗原的具体形式。相反地,本发明包括本领域中已知的、用于产生负载抗原的APC的其它方法。优选地, APC用编码限定抗原的mRNA转染。利用适当的引物和逆转录酶_聚合酶链反应(RT-PCR) 结合转录反应,对应于序列已知的基因产物的mRNA可以在体外被快速产生。对于产生脉冲的APC来说,用mRNA转染APC提供超过其它抗原负载技术的优势。例如,从微量组织,即, 肿瘤组织,扩增RNA的能力扩大了 APC的用途,用于对大量患者接种疫苗。
对于作为疫苗有用的抗原组合物,抗原组合物必需诱发对细胞、组织或哺乳动物 (例如,人)中抗原的免疫应答。如本文中所使用的,“免疫学组合物”可以包括抗原(例如,肽或多肽)、编码抗原的核酸(例如,抗原表达载体)或表达或呈递抗原或细胞成分的细胞。在
中,抗原组合物包括或编码所有或部分本文所述的任意抗原,或其免疫学上的功能等同物。在其它实施方式中,抗原组合物在包括另外的免疫刺激剂或编码这种剂的核酸的混合物中。免疫刺激剂包括、但不限于另外的抗原、免疫调节剂、抗原呈递细胞或佐剂。在其它实施方式中,一种或多种另外的剂以任意组合共价结合到抗原或免疫刺激剂。在某些实施方式中,抗原组合物结合于或包括HLA锚定基序氨基酸。
如在本文中所考虑的,疫苗的核酸和/或细胞成分的组成可以变化。在非限制性实例中,编码抗原的核酸也可以与佐剂配制。当然,应该理解,本文所述的各种组合物可以进一步包括另外的成分。例如,一种或多种疫苗成分可以包含在脂类或脂质体中。在另外的非限制性实例中,疫苗可以包括一种或多种佐剂。本发明的疫苗及其各种成分可以通过本文所公开的任何方法进行制备和/或施用,或者,如本领域技术人员将会知道的,鉴于本发明的公开内容,进行制备和/或施用。
应该理解,本发明的抗原组合物可以通过本领域中悉知的方法进行制备,所述方法包括但不限于通过固相合成和通过HPLC纯化去掉化学反应的其它产物进行的化学合成,或者通过在体外翻译体系或或细胞中表达编码包含本发明抗原的肽或多肽的核酸序列 (例如,DNA序列)而产生。另外,抗原组合物可以包括分离自生物学样品的细胞成分。抗原组合物被分离并大量透析,以去除一种或多种不期望的小分子量分子和/或被冻干,以更容易配制成期望的赋形剂。进一步理解,在疫苗组分中进行的另外的氨基酸、突变、化学修饰等等——如果存在的话,将优选基本上不干涉抗体识别表位序列。
对应于一个或多个本发明抗原决定簇的肽或多肽的长度通常应该为至少5个或6 个氨基酸残基,并且可以包含多达约10个、约15个、约20个、约25个、约30个、约35个、约40个、约45或约50个残基等等。肽序列可以通过本领域普通技术人员已知的方法合成,所述方法例如利用自动肽合成仪进行肽合成,所述自动肽合成仪如可以获自Applied Biosystems, Inc. , Foster City, CA (Foster City, CA)的那些。
较长的肽或多肽也可以例如通过重组手段被制备。在某些实施方式中,编码本文所述的抗原组合物和/或成分的核酸可被用于,例如体外或体内产生本发明的各种组合物和方法的抗原组合物。例如,在某些实施方式中,编码抗原的核酸被包含在,例如重组细胞的载体中。核酸可以被表达,以产生包含抗原序列的肽或多肽。肽或多肽可以从细胞中分泌,或者作为部分被包含或者在细胞内。
在某些实施方式中,可以通过用编码抗原的核酸转染或接种哺乳动物来促进免疫应答。然后,在施用核酸给哺乳动物之后,包含在目标哺乳动物中的一个或多个细胞表达由该核酸编码的序列。疫苗也可以是,例如编码抗原的所有或部分肽或多肽序列的核酸(例如,cDNA或RNA)的形式。通过核酸的体内表达可以,例如通过质粒型载体、病毒载体或病毒/质粒构建载体进行。
在另外的实施方式中,核酸包括编码区,所述编码区编码所有或部分序列,所述序列编码适当的抗原,或其免疫学上的功能等同物。当然,核酸可以包括和/或编码另外的序列,包括、但不限于包含一种或多种免疫调节剂或佐剂的那些。
杭原
如在本文中所考虑的,本发明可以包括应用适于载入APC以引起免疫应答的任何抗原。在一个实施方式中,可以使用肿瘤抗原。肿瘤抗原可以分成两大类共有的肿瘤抗原;和特有的肿瘤抗原。共有抗原由许多肿瘤表达,而特有肿瘤抗原由通过物理或化学致癌原诱导的突变引起,因而仅由个别肿瘤表达。在某些实施方式中,共有肿瘤抗原被载入到本发明的DC中。在其它实施方式中,特有肿瘤抗原被载入到本发明的DC中。
在本发明的上下文中,“肿瘤抗原”是指特定高度增生性疾病共有的抗原。在某些方面,本发明的高度增生性疾病抗原衍生自癌症,包括但不限于原发性或转移性黑素瘤、胸腺瘤、淋巴瘤、肉瘤、肺癌、肝癌、非霍奇金淋巴瘤、霍奇金淋巴瘤、白血病、子宫癌、宫颈癌、 膀胱癌、肾癌和腺癌诸如乳腺癌、前列腺癌、卵巢癌、胰腺癌等等。
恶性肿瘤表达一些可用作免疫攻击的目标抗原的蛋白质。这些分子包括、但不限于组织特异性抗原诸如黑素瘤中的MART-I、酪氨酸酶和GP 100以及前列腺癌中的前列腺酸性磷酸酶(PAP)和前列腺特异性抗原(PSA)。属于转化相关分子类的其它目标分子诸如癌基因HER-2/Neu/ErbB-2。再一类的目标抗原是癌胚抗原诸如癌胚抗原(CEA)。在B细胞淋巴瘤中,肿瘤特异性独特型免疫球蛋白构成真正的肿瘤特异性免疫球蛋白抗原,其是个别肿瘤特有的。B细胞分化抗原诸如CD19、CD20和CD37是B细胞淋巴瘤中的目标抗原的其它候选者。一些这种抗原(CEA、HER-2、⑶19、⑶20,独特型)已经被用作通过单克隆抗体进行的被动免疫治疗的目标,获得有限的成功。
肿瘤抗原及其抗原癌表位可以从天然源,诸如从初级临床分离物、细胞系等等被纯化和分离。癌症肽及其抗原表位也可以通过本领域中已知的化学合成或通过重组 DNA技术获得。用于化学合成的技术描述在Steward等(1969) ;Bodansky等(1976); Meienhofer (1983);和 Schroder 等(1965)中。此外,如在 Renkvist 等(2001)中所描述的, 本领域中存在许多已知的抗原。尽管没有具体描述类似物或人工修饰的表位,但技术人员知道如何通过本领域中的标准手段获得或产生它们。被抗体识别并由Serex技术(见Sahin 等(1997)和Chen等(2000))所检测的其它抗原在路德维格癌症研究院(Ludwig Institute for Cancer Research)的数据库中被鉴别。
在再另外的实施方式中,本发明可以包括微生物抗原,用于通过APC进行呈递。如本文中所考虑的,微生物抗原可来源于病毒、细菌或真菌。感染性病毒的实例包括逆转录病毒科(Retroviridae)(例如,人免疫缺陷病毒诸如HIV-I (也称为HTLV-III. LAV或 HTLV-III/LAV 或 HIV-III ;和其它隔离群诸如 HIV-LP ;小 RNA 科病毒(Picornaviridae) (例如,脊髓灰质炎病毒、甲型肝炎病毒;肠道病毒、人柯萨奇病毒、鼻病毒、埃可病毒);环状病毒科(Calciviridae)(例如,引起肠胃炎的毒株);披膜科病毒(Togaviridae)(例如,马脑炎病毒、风疹病毒);黄病毒科(Flaviridae)(例如,登革病毒、脑炎病毒、黄热病病毒);冠状病毒科(Coronaviridae)(例如,冠状病毒);(Rhabdoviridae)弹状病毒科 (例如,水疱性口炎病毒、狂犬病病毒);丝状病毒科(Filoviridae)(例如,埃博拉病毒); 副黏病毒科(Paramyxoviridae)(例如,副流感病毒、腿腺炎病毒、麻疫病毒、呼吸道合胞病毒);正黏病毒科(Orthomyxoviridae)(例如,流感病毒);布尼亚病毒科(Bungaviridae) (例如,汗坦病毒、布尼亚病毒、白岭病毒和内罗病毒);沙粒病毒科(Arena viridae)(出血热病毒);呼肠病毒科(Reoviridae)(例如,呼肠病毒、环状病毒和轮状病毒);|RNA 病毒科(Birnaviridae);肝0應病毒科(Hepadnaviridae)(乙型肝炎病毒);细小病毒科 (Parvovirida)(细小病毒);乳多空病毒科(Papovaviridae)(乳头瘤病毒、多瘤病毒); 腺病毒科(Adenoviridae)(大部分腺病毒);疱疫病毒科(Herpesviridae)(单纯疱疫病毒 (HSV) I和2型、水痘带疹病毒、巨细胞病毒(CMV)、疱疹病毒);痘病毒科(Poxviridae)(天花病毒、牛痘病毒、痘病毒);和虹彩病毒科(Iridoviridae)(例如,非洲猪痕病毒);和未分类病毒(例如,海绵状脑病的病原、S肝炎病原(被认为是乙型肝炎病毒的缺陷型卫星 (defective satellite))、非甲型、非乙型肝炎的病原(I类=体内传播的;2类=非经肠道传播的(即,丙型肝炎);诺瓦克病毒和相关病毒和星状病毒)。
感染性细菌的实例包括幽门螺杆菌(Helicobacter pyloris)、布氏疏螺旋体(Borelia burgdorferi)、嗜肺军团菌(Legionella pneumophilia)、分枝杆菌属某些种(Mycobacteria sps)(例如,结核分枝杆菌(M. tuberculosis)、鸟分枝杆菌M. avium()、胞内分支杆菌(M. intracelIulare)、堪萨斯分支杆菌(M. kansasii)、登氏分枝杆菌(M. gordonae))、金黄色葡萄球菌(Staphylococcus aureus)、淋病奈瑟菌 (Neisseriagonorrhoeae)、脑膜炎奈瑟菌(Neisseria meningitidis)、单核细胞增生李斯特杆菌(Listeria monocytogenes)、酿胺链球菌(Streptococcus pyogenes) (A 组链球菌)、无乳链球菌(Streptococcus agalactiae) (B 组链球菌)、链球菌(Streptococcus) (草绿色链球菌组(viridans group))、粪链球菌(Streptococcus faecalis)、牛链球菌(Streptococcusbovis)、链球菌(Streptococcus)(厌氧种(anaerobic sps.))、肺炎链球菌(Streptococcuspneumoniae)、病原体弯曲杆菌属种(Campylobacter sp.)、 肠球菌属种(Enterococcussp.)、流感嗜血菌(Haemophilus influenzae)、炭疽芽抱杆菌(Bacillus anthracis)、白喉棒杆菌(corynebacterium diphtheriae)、棒杆菌属种 (corynebacterium sp·)、猪红斑丹毒丝菌(Erysipelothrix rhusiopathiae)、产气荚膜梭菌(Clostridium perfringens)、破伤风梭菌(Clostridium tetani)、产气肠杆菌(Enterobacter aerogenes)、肺炎克雷伯氏菌(Klebsiella pneumoniae)、多杀巴斯德氏菌 (Pasturella multocida)、类杆菌属种(Bacteroides sp·)、具核梭杆菌(Fusobacterium nucleatum)、念珠状链杆菌(Streptobacillus moniliformis)、极细密螺旋体(Treponema pertenue)、钩端螺旋体(Leptospira)和衣氏放线菌(Actinomyces israelii)。
感染性真菌的实例包括新生隐球菌(Cryptococcus neoformans)、荚膜组织胞楽■菌(Histoplasma capsulatum)、粗球抱子菌(Coccidioides immitis)、皮炎芽生菌(Blastomyces dermatitidis)、沙眼衣原体(Chlamydia trachomatis)和白色念珠菌 (Candida albicans)。其它感染性生物体(即,原生生物(protists))包括恶性痕原虫 (Plasmodium falciparum)和刚地弓形虫(oxoplasma gondii)。
DC的活化
虽然常规的基于DC的疫苗(之前在临床试验中占优势)用包括TNF、IL-6、PGE2 和IL-I β的组合的细胞因子混合物使DC成熟——该混合物最终刺激无菌炎症,但本发明改为利用TLR激动剂来使DC成熟并刺激信号的产生。
根据本发明的方面,用TLR配体的组合来刺激DC导致增加量的IL-12的产生。此外,用TLR激动剂的组合活化DC或产生更显著的⑶4和⑶8Τ细胞应答。(Warger 等,2006,Blood 108:544 - 550)。因此,通过暴露于触发TLR的这些配体,本发明的DC能分泌Thl驱动细胞因子诸如IL-12。例如,将聚(I:C)、TLR3激动剂加入到IL-I β、TNF-α 和IFN-Y能够产生有效的I-型极性化的DC,其以高水平的IL-12产量为特征(Heifler 等,1996,Eur. J. Immunol. 26:659-668)。在某些实施方式中,抗原可以在TLR激动剂暴露前被载入到DC。在其它实施方式中,抗原可以在TLR激动剂暴露后随后被载入到DC。
根据本发明的方面,新的、完整的方法被用于产生高度有效的DC,其通过TLR活化产生强的抗肿瘤免疫应答。该方法,也可以被称为通过活化的固有(自体的)转移(ICAIT) 进行的免疫调节,利用通过刺激细菌感染的生物分子特异性活化的、单核细胞衍生的DC,从而构成ICAIT-DC。这种独特的活化方法将在通过TNF、IL-6、PGE2和IL-I β的细胞因子混合物成熟(“常规的成熟”)的DC中没有发现的性质赋予DC,其还刺激无菌炎症(Lombardi 等,2009,J. Immunol. 182:3372 - 3379)。
在一个实施方式中,本发明的ICAIT-DC可用TLR4激动剂、细菌脂多糖(LPS)、 TLR7/8 激动剂、resimiquod(R848)和 / 或 IFN- Y 的组合进行活化(Amati 等,2006, Curr. Pharm. Des 12:4247-4254)。通过用TLR4激动剂和细菌LPS活化DC,产生ICAIT-DC,其与通过常规成熟方法产生的DCl至少实质上相同(在表型上)。这些ICAIT-DC具有高的表面分子的表达,所述表面分子包括⑶83、⑶80、⑶86和HLA-DR。在其它实施方式中,可以使用TLR2激动剂诸如脂磷壁酸(lipotechoic acid, LTA)、TLR3激动剂诸如聚(I:C)和/或其它TLR4激动剂诸如MPL。如在本文中所考虑的,任何TLR激动剂或TLR激动剂的组合均可用于活化DC,倘若这些配体通过活化的DC刺激细胞因子和趋化因子信号的产生。许多其它TLR激动剂在本领域中是已知的,并可以在公开的文献中找到,以结合本发明使用。
即使ICAIT-DC和常规成熟的DC的表型之间存在相似性,但本发明的ICAIT-DC 显示许多显著的优势。例如,如在图I中所描述的,与常规成熟的DC相比,ICAIT-DC产生更高水平的 TNF 以及高水平的 IL-12、CCL3 (MIP-1 α )和 CCL4 (ΜΙΡ-1 β )、CCL5 (RANTES)和 CXCLlO(IP-IO)。
这些因子中的每一个均可增强抗肿瘤免疫性的方面。例如,CXCLlO (IP-10)化学吸引增强肿瘤排斥的 NK 细胞(Zing 等,2005, J. Interferon Cytokine Res. 25:103-112)。 TNF和IL-12是抗血管生成的,并断绝肿瘤的血液供应(Albini等,2009,J. Transl. Med. 7(5)) ο IL-12促进分泌IFN-Y的Thl细胞的发育和补充(募集,recruitment),并活化NK细胞。与此相反,常规成熟的DC对于所有这些生物分子的表达非常差,相反地, 其强烈表达CCL17 (TARC)——与变应性反应有关的趋化因子,以及Th2细胞的补充(Xiao 等,2003,Cytokine 23:126-132)。同样描述在图I中的是ICAIT-DC显示常规DC所缺乏的独特杀伤作用的能力,由此它们能够裂解乳腺癌细胞系。
因此,本发明的ICAIT-DC不仅显示已知为有效的抗肿瘤分子的细胞因子的产生, 而且,ICAIT-DC还积极影响敏化的T细胞的性质。如图2所描述的,虽然常规成熟的DC和 ICAIT-DC均能针对肿瘤抗原成功地敏化T细胞,但仅ICAIT-DC能调节T细胞,以有效识别表达HER-2的肿瘤。这表明,肿瘤具有通过与常规DC活化有关的手段来保护它们免于被敏化的T细胞识别的机制,但是,这些机制可以被由ICAIT-DC敏化和调节的T细胞克服。因此,ICAIT-DC例证常规DC所不具有的独特性质,并且,ICAIT-DC模型允许调节高级T细胞敏化,多谱系效应子对肿瘤沉积物的趋化吸引,并且有助于癌细胞的直接破坏。
ICAIT-DC在免疮治疗中的应用
尽管在开发基于DC的癌症疫苗方面已经取得了进展,但仍存在限制当前基于DC 的癌症疫苗成功的许多挑战。一个最重要的挑战是克服肿瘤逃避免疫系统的能力。这可以归于这样的事实,即,组织特异性肿瘤相关的抗原可能是微弱的免疫原性的,因此逃避宿主免疫应答,或者免疫应答可以免疫编辑肿瘤,因而消除抗原_阳性细胞而剩下抗原_阴性肿瘤细胞。该免疫编辑的过程是一种方法,由此免疫应答可以将肿瘤塑造成更具侵袭性的表型。免疫编辑可以部分地解释为何仅靶向单一组织特异性抗原产生了相当有限的临床成功。除靶向的免疫编辑概念之外,表位扩展的想法作为增强效应T细胞诱导的另一可能的机制近来也获得关注。
利用DC的大部分临床试验仅靶向组织特异性肿瘤蛋白质/抗原。然而,存在许多这样的分子,其在过表达时与肿瘤性转化相关并尚未被靶向。例如,存活蛋白——抗凋亡家族的一员——被理解为信号传导和转录活化因子(STAT3)通路的直接下游目标(Gritsko 等,2006,Clin. Cancer Res. 12:11 - 19)直接抑制STAT3信号传导阻断存活蛋白的表达并发起乳癌细胞的凋亡。还据信,HER-2/neu过表达的诱导上调存活(Siddiqa等,2008,BMC Cancer 8:129)。公认的肿瘤抗原——HER-2/neu和信号传导通路基因——存活蛋白之间的这种联系提供巨大的潜力来开发新的免疫治疗干预,其靶向乳腺癌的发病机理中的多个效应子。存活蛋白基因的其它免疫原性肽已经被识别,所以通过本发明的体系和方法开发抗_存活蛋白、基于DC的治疗非常可靠,并且,结合确认的抗-HER-2/neu、基于DC 的接种疫苗对于衰退具有深远的影响,而且可能预防不依赖于雌激素的乳腺癌(Reker 等,2004,Cancer Biol. Ther.3:180 - 183)。
蛋白质HER-1/EGFR是新的分子的另一实例,其可用作根据本发明的体系和方法开发的基于DC的疫苗的靶标。除了存活蛋白以外,HER-1/EGFR也可用作基于DC的癌症疫苗的、新的非组织特异性靶。乳腺癌、结直肠癌、多形性脑神经胶质瘤、胰腺癌和非小细胞肺癌范围内的各种恶性肿瘤的癌发生已经涉及HER-1/EGFR的过表达或突变(Hynes等,2009,Curr. Opin. Cell Biol. 21:177-184)。DC 可以用 HER-1/EGFR 脉冲并如本文所述地被活化,因而可以产生抗-HER-1/EGFR T细胞应答。
黏蛋白I(MUC-I)也可以用作癌症疫苗靶标。MUC-I是一种上皮细胞糖蛋白, 其在许多腺癌中高度过表达并异常糖基化,所述腺癌包括乳腺癌和胆癌和胰腺癌(Vlad 等,2004,Adv. Immunol. 82:249-293 ;von Mensdorff-Pouilly 等,2000,Int.J.Biol. Markersl5,343-356)。在肿瘤浸润和转移中已经涉及MUC-I的过表达。假设MUC-I的过表达与一些血液和上皮恶性肿瘤有关,结合抗-MUC-I、基于DC的疫苗与针对组织特异性肿瘤靶标的疫苗会产生临床上相关的结果。靶向这些分子会对肿瘤细胞的增殖产生深远的影响,因而中断疾病的进展。因为基于DC的疫苗可以包括蛋白质诸如存活蛋白和HER-I/ EGFR,利用多重靶向的接种疫苗方法有可能在临床上影响疾病发展。
如在本文中所考虑的,CSC也是本发明的新的、基于DC的疫苗的免疫治疗靶标。据信,干细胞亚群体引发和维持各种赘生物(Wicha等,2006,Cancer Res. 66:1883 - 1890)。 与CSC有关的通路被认为缺乏调节,因而产生CSC的不受控制的自我更新,这产生抵抗常规治疗的肿瘤(Eyler等,2008,J. Clin. Oncol. 26:2839 - 2845)。当前的癌症干预靶向分化的肿瘤细胞,但不伤害CSC群体(Eyler等,2008,J. Clin. Oncol. 26:2839 - 2845),然而,正是 CSC群体可能引发疾病复发和/或限制标准治疗的治疗益处。因此,有必要在对控制自我更新和在CSC中生存的方面的信号传导通道更好地理解的基础上,设计新的策略,以鉴定这些细胞中的新的治疗靶标。干细胞标记已经在一些人类恶性肿瘤——包括血液恶性肿瘤和脑、前列腺、乳、胰腺、头颈和结肠肿瘤中被识别。除了识别干细胞标记之外,调节自我更新和细胞发育的通道诸如Wnt、Notch和Hedgehog也被详细地分析(Kakarala等,2008, J. Clin. Oncol. 26:2813 - 2820 ;Medina 等,2009,Clin. TransI. Oncol. 11:199 - 207 ;Bolos 等,2009,Clin. TransI. Oncol. 11:11 - 19 ;Bisson 等,2009,Cell Res. 19(6):683 - 697)。
在开发靶向特定肿瘤的DC疫苗中应用的相同机制也可以用于靶向对于CSC特异的分子。据信,并非所有的乳癌细胞都是一样的,以及乳CSC亚组可能是浸润性和转移性疾病发展的原因。人乳腺癌包含以显示干细胞性质的细胞表面标记⑶44+/⑶241ow/lin-的表达为特征的细胞群体(Al-Hajj 等,2003,Proc. Natl Acad. Sci. USA 100:3983 - 3988)。 HER-2/neu属于调节干细胞群体的分子。在干细胞标记醛脱氢酶I的表达和HER-2/neu过表达之间存在相关性。例如,在一系列477个乳腺癌中,正常人乳腺上皮细胞以及乳腺癌中的HER-2/neu过表达与表达ALDHI的干细胞比例的增加有关(Ginestier等,2007, Cell干细胞.5:555 - 567)。HER-2/neu表达和干细胞之间的这种相关性用作识别CSC的特定标记如何能促进利用本发明的体系和方法的、基于DC的疫苗的开发的完美实例,本发明的体系和方法不仅靶向肿瘤抗原,而且也意图消除自我调节细胞诸如干细胞。靶向总是连接CSC 的分子部分地通过减少可用作癌发生引发剂的多能细胞的克隆而可以有效预防癌症。针对基于DC的疫苗的开发考虑本发明,癌症疫苗开发同样可以以靶向对于CSC特异的分子为目标。通过靶向在CSC中表达的分子,存在机会来消除可能导致大部分系统性复发和当前抗癌治疗失败的细胞的克隆。为了实现这个,鉴别对于CSC特异的分子,然后,如在本文中所考虑的,可以实施基于DC的免疫治疗,以靶向对于干细胞特异的分子。
调节细胞功能的抑制
本发明还显示,TLR配体不仅活化呈递细胞,而且抑制用于限制适应性应答的调节细胞。在某些实施方式中,通过若干Toll样受体——包括TLR-2、TLR-4、TLR-8和TLR-9进行的信号传导通过Tmss逆转阻抑。在本文中显示,TLR-4-活化的树突细胞不仅抑制TMg对反应细胞的作用,而且表现出将调节子本身转换成产生IFN-Y的效应子。
通过LPS和IFN- Y活化的树突细胞而不是通过细胞因子-成熟的DC消除调节T 细胞对反应细胞增殖的抑制性作用。由于凋亡标记在TLR活化的DC存在下的表达没有变化,所以该作用不是由于细胞死亡造成的。如本文所显示的,甚至在TLR-活化的树突细胞通过半透性膜与调节子和反应细胞分开时,仍能观察到反应细胞增殖的恢复。该作用借助于可溶因子,但不依赖于IL-6和IL-12。此外,这种未知的可溶介体表现出至少部分对调节子本身而不是反应细胞起作用。如本文中所显示的,TLR-活化的树突细胞可以在T调节细胞中引起细胞因子产生和效应子作用。调节T细胞在TLR-活化的树突细胞而不是不成熟的或通过细胞因子_成熟的树突细胞的存在下产生大量IFN- Y。IFN- Y的产生与Thl转录调节子T-bet的上调有关,并且很大部分的产生IFN- Y的调节子共同表达T-bet和FoxP3。 虽然LPS-活化的树突细胞对反应细胞增殖的作用是不依赖于IL-12的,但T-bet的上调被中和抗-IL12抗体抑制。因此,用LPS活化的、单核细胞衍生的DC可以通过抑制阻抑因子 T细胞和将这些调节子复原成Thl效应子而部分引导免疫应答的表型。
冷藏
如之前所阐释的,本发明不仅提供用于通过开发ICAIT-DC而产生优异APC的体系和方法,而且提供用于以保持其在解冻后产生对于T细胞功能重要的信号的能力的方式冷藏这些活化的DC的体系和方法。如在本文中所考虑的,本发明包括多种冷藏技术和低温培养基,如将被本领域的技术人员所理解的。例如,在某些实施方式中,用于培养的细胞的低温培养基可以包括约5-10%DMS0或甘油和10-50%血清,如例如人血清。在其它实施方式中,低温培养基可以不含血清。在某些实施方式中,可以使用受控的冷冻速率,而其它实施方式可以包括使用绝热容器,其中,与低温培养基混合的细胞的管形瓶放置在冷冻机中,如在约-70°C到_80°C的温度范围内。本发明以这种方式提供保藏活化的ICAIT-DC的方法 以便进一步促进这种细胞的临床应用和减少对大量的重复提取(pherisis)和冲洗步骤的需要。如在本文中所考虑的,冷藏技术可以用于小规模和大规模批量作业。
当考虑活化的DC的广泛用途时,提供稳定供应冷藏的、活化的DC的能力代表明显的优势,该优势可以促进这种细胞的各种治疗用途。例如,活化的DC的大规模培养物可以根据本发明的方法以合适大小的等分试样进行冷藏,以便单独剂量的细胞稍后可用于任何特定的免疫治疗方案中。在某些实施方式中,活化的DC可以在_70°C或更低的温度下被冷藏达2-24周。在较低的温度下,诸如约_120°C或或更低,活化的DC可以被冷藏至少一年或更久。
在一个示例性实施方式中,DC悬浮在人血清和大约10%DMS0(v/v)中。可选地, 可以使用其他血清型,诸如胎牛血清。悬浮的细胞被等分成较小的样本,诸如在1.8ml管形瓶中,并在大约-70°C或或更低的温度下储存。在其它实施方式中,低温培养基可以包括约20%血清和约10%DMS0,并且,悬浮的细胞可以在约-180°C下储存。进一步的实施方式可以包括包含以下的培养基约55%氧化聚明胶——其是血浆扩张剂、约6%羟乙基淀粉和约 5%DMS0。其它示例性低温培养基可以包括约12%DMS0和约25-30%的血清。
虽然本文描述的本发明可以包括特定浓度的血清,但本领域的技术人员应该理19解,低温培养基中血清的确切量可以变化,并且在一些实施方式中可以完全不存在,但通常将在约1%到30%的范围内。当然,产生大约50%的细胞存活率和/或大约50%的细胞回收率的任何浓度的血清均可用于本发明的任意ICAIT-DC组合物中,以及用于本文所述的任何冷藏方法。优选地,在选择的低温培养基中回收冷藏的细胞时,细胞存活率和回收率至少为60%,更优选至少约70%,或者甚至期望80%。
类似地,虽然本文所述的本发明可以包括特定浓度的DMS0,但本领域的技术人员应该认识到,在一些实施方式中,DMSO可以完全不存在,而在其它实施方式中,从约5%到高达约20%的浓度可用于低温培养基中,并包括在本文所述的冷藏方法中。通常,较低浓度的 DMSO是优选的,诸如在约5%到约10%之间。然而,在解冻后导致至少50%的细胞存活率和至少50%的细胞回收率,优选至少60%的细胞存活率和回收率,更优选约70%,更优选约80% 和甚至更优选约90%以及更高细胞存活率和回收率的任何浓度的DMSO均可以被使用。
虽然本文所述的本发明可以包括参考速度控制的冷冻,但本领域的技术人员应该理解,以速度控制或非速度控制方式进行冷冻的方法可以被常规使用。本领域的技术人员还应该理解,本文所述的各种冷藏培养基可以包括血清或者不含血清。不含血清的培养基的实例可以包括XVIVO 10、XVIV0 15、XVIV0 20, StemPro以及任何商业可得的不含血清的培养基。但使用不含血清的低温培养基时,本发明的冷藏方法通常不包括感染剂、抗体和可能具有抗原性的外源蛋白质以及通常在基于血清的低温培养基中可能发现的其它外源分子。
负载抗原的、活化的DC的冷藏可以在用TLR激动剂活化细胞之后在任何时刻发生。在一个实施方式中,活化的DC在暴露于TLR激动剂后约6-8hr被冷藏。优选地,选择用来冷藏活化的细胞的时间点可以基于细胞的信号产生,尤其是IL-12产生的最大化。
治疗应用
本发明包括负载抗原的、活化的APC的产生,其在从冷藏解冻后产生显著水平的细胞因子和趋化因子,其中所述负载抗原的和活化的APC被用于哺乳动物,优选人的免疫治疗中。对由APC呈递的抗原的应答可以通过利用本领域中已知的方法监测对抗原的溶细胞性T细胞应答、辅助T细胞应答和/或抗体应答的诱导来测量。
本发明包括增强哺乳动物中免疫应答的方法,包括如下步骤从获自哺乳动物 (例如,患者)的单核细胞中产生不成熟的DC ;用包含抗原组成的组合物脉冲不成熟的DC ; 用至少一种TLR激动剂活化负载抗原的DC ;冷藏活化的、负载抗原的DC ;解冻活化的、负载抗原的DC ;然后,将活化的、负载抗原的DC施用给需要其的哺乳动物。组合物至少包括抗原,其还可以是在哺乳动物中用于离体免疫和/或体内治疗的疫苗。优选地,哺乳动物是人。
离体方法在本领域中是悉知的,并在下面被更充分地论述。简言之,从哺乳动物 (优选人)中分离细胞。可将细胞施用给哺乳动物接受者,以提供治疗益处。哺乳动物接受者可以是人,并且,对于接受者来说,细胞可以是自体的。可选地,对于接受者来说,细胞可以是同种异源的、同源的或异种的。
在一个实施方式中,通过组合的白细胞提取和冲洗从患者中获得外周血单核细胞。可以用GM-CSF和IL-4在SFM中培养单核细胞过夜。次日,可以用抗原脉冲不成熟的 DC,接下来使DC接触IFN- Y和LPS。然后,可将活化的DC悬浮于低温培养基中并冷冻直到准备用于免疫治疗中。
冷藏的ICAIT-DC可以在与新活化的ICAIT-DC相比能有效产生细胞的回收率% 和存活率%的条件下离体进行培养。产生自冷藏的样品的ICAIT-DC可以显示与新制备的 ICAIT-DC相比相似的稳定性。此外,冷藏的成熟DC与那些新制备的DC的比较可以显示实质上一致的表型以及信号分泌特性。如
查看更多专利详情

下载专利文献

下载专利