早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

层状硅酸盐及其合成制作方法

  • 专利名称
    层状硅酸盐及其合成制作方法
  • 发明者
    艾维·道恩·约翰逊
  • 公开日
    1988年2月17日
  • 申请日期
  • 优先权日
  • 申请人
    无比石油公司导出引文BiBTeX, EndNote, RefMan
  • 文档编号
  • 关键字
  • 权利要求
    1.一种层状产品,它包括含有非硅骨架原子的层状硅酸盐和将硅酸盐各层隔开的撑柱,该撑柱是从元素周期表IB,IIB,IIIA,IIIB,IVA,IVB,VA,VB,VIA,VIIA,VIIIA等族中选出的至少一种元素的氧化物2.根据权利要求1的产品,其中硅酸盐是非膨胀性的(按本文所定义的)3.根据权利要求1的产品,其中硅酸盐具有水羟硅钠石、马水硅钠石或麦羟硅钠石的结构4.根据权利要求1的产品,其中非硅骨架原子是由Al,Zr,B,Co,Cr,Fe,Ga,In和Ni中选定的5.根据权利要求1的产品,其中的撑柱是由多聚氧化物形成的6.根据权利要求5的产品,其中的撑柱包括多聚氧化硅7.一种制备层状产品的方法,该产品的相邻层被选自元素周期表IB,IIB,IIIA,IIIB,IVA,IVB,VA,VB,VIA,VIIA和VIIIA等族的至少一种元素的氧化物撑柱所隔开;该方法包括下列步骤从层状硅酸盐开始,该硅酸盐含有非硅骨架原子和与之相结合的阴离子位置;通过向这些阴离子位置引入有机阳离子物质,借物理作用将硅酸盐各层隔开;再向被隔开的各硅酸盐层片之间引入能转化为氧化物的化合物;将所述化合物转化为硫属化物,以生成将硅酸盐相邻各层分开的氧化物撑柱8.根据权利要求7的方法,其中层状硅酸盐是将含有二氧化硅的原料化合物和非硅原子的原料化合物的水相反应混合液进行结晶而生成的,所以该非硅原子进入层状硅酸盐骨架9.根据权利要求8的方法,其中在结晶过程之后,层状硅酸盐骨架上的非硅原子至少部分地被另外的非硅原子所置换10.根据权利要求7的方法,其中的有机阳离子物质是烷基铵阳离子11.一种催化剂组合物,它含有权利要求1的层状产品和一种基体材料
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:层状硅酸盐及其合成的制作方法本发明涉及含有层间硫属化物的层状硅酸盐及其制备方法。已知有多种含有三维结构的层状材料,但三维结构中只有二维表现出最强的化学结合能力。在这类材料中的二维平面中形成较强的化学键,而三维的固体是通过这种平面相互堆积而形成的,这种平面间的相互作用较之将每一平面保持在一起的化学键为弱。这些较弱的键一般是由层间的相互吸引作用形成的,例如范德华力、静电相互作用及氢键等。在层状结构具有电中性片层的情况下,各层间相互作用完全通过范德华力,则当这些平面相互横切滑动时不会受到由层间结合力引起的能垒作用,因而表现出良好的润滑性。石墨就是这类材料的一例。许多粘土材料的硅酸盐层是通过层间离子提供的静电吸引力结合在一起的。此外,在相邻各层的互补位置之间会直接产生氢键键合相互作用,或者由层间桥联分子提供氢键键合相互作用。对粘土之类的层状材料可进行改性处理,以增加其表面积。尤其是可以通过吸收各种能进入其层间空隙并将各层撑开的溶胀剂,如水、乙二醇、胺类及丙酮等,能显著地增加层间的距离。然而当占据这种空隙的分子被移走时,这类层状材料的层间空隙就易于塌陷,例如将粘土暴露于高温中就有这种情况。所以这类表面积被增大了的材料不适宜用于甚至只是涉及中等苛刻条件的化工作业中。可用标准的技术确定层间分离的程度,例如可用X射线衍射测定其基线间距(basal spacing),也称作“重复距离”(repeatdistance)或“d-间距”(d-spacing)。这些量值表示一层的最高边缘与其邻接层的最高边缘之间的距离。如果一层的厚度已知,则可通过从基距减去层厚得到层间间距。已通过多种途径制备具有热稳定性和增大的层间间距的层状材料。大部分方法是基于向层状材料的层间空隙引入无机的“柱撑剂”。例如美国专利4216188公开了一种与金属氢氧化物交联的粘土,它是通过极稀的含有完全分开的粘土单层的胶体溶液和由胶体金属氢氧化物溶液组成的交联剂制备的。但是这一方法需用极稀的粘土生成液(小于1克/升),以使所有各层片予先完全分离,以便掺入柱撑剂和荷正电的交联剂。美国专利4248739描述了一种稳定的含有撑柱夹层的粘土,它是由蒙脱石类粘土与铝锆之类金属的阳离子金属络合物反应而制得的。所得产品呈现高的层间分离程度和热稳定性。美国专利4176090公开了一种含有铝、锆、钛之类的金属的多聚阳离子羟基金属络合物夹层的粘土组合物。据称其层间距可高达16_,然而示例中的煅烧样品的层间间距只限于大约9_。这些层间间距基本上是不能改变的,并与羟基金属配合物的特征尺寸有关。含硅材料因为具有很高的热稳定性质,所以被认为是很理想的柱撑剂。美国专利4367163描述了一种嵌入二氧化硅夹层的粘土,其制备方法是对粘土基质用离子型硅络合物之类的含硅试剂(例如硅的乙酰丙酮化物)或SiCl4之类的中性物质浸渍。在硅浸渍之前或硅浸渍过程中,可用适当的极性溶剂使粘土膨胀,如用二氯甲烷、丙酮、苯甲醛、三烷基铵离子或四烷基铵离子,以及二甲亚砜等。但是这种方法似乎只能使嵌入的二氧化硅形成单层,致使产品的层间距较小,经X射线衍射法测定大约为2-3_。从一方面来说,本发明属于一种层状产品,它包括含有非硅骨架原子的层状硅酸盐和从元素周期表(Fisher Scientific Co.Cat.No.5-702-10,1978)IB,IIB,IIIA,IIIB,IVA,IVB,VA,VB,VIA,VIIA,VIIIA等族中选出的至少一种元素的氧化物撑柱,将该硅酸盐各层隔开。更可取的是这种材料应是热稳定的,即能经受450℃下至少2小时的煅烧,而硅酸盐层间间距无明显减小(例如不超过10-20%)。上述撑柱最好是由多聚氧化物形成的,并且产品的d-间距至少为20_。从另一方面来说,本发明属于一种层状产品,它包括非膨胀性的(按本文所定义的)含有非硅骨架原子的层状硅酸盐和将该硅酸盐各层隔开的含至少一种氧化物的撑柱。
为此目的,所考虑的多聚氧化物应是包括两个或两个以上重复单元的氧化物,最好含三个以上重复单元,比如四个以上,甚至五个以上重复单元。我们相信层间夹层的多聚氧化物的聚合度一定会影响层状产品最终的层间分离程度。
还应说明,本文中所用的“层状”硅酸盐一词,是在能被普遍接受的意义上使用的,表示含有很多层分开的硅酸盐层片的材料,这些层片彼此间能被物理地分离开而位移,从而使相邻层之间的间距增大。可用X射线衍射技术和/或密度测量法测定这种位移。
从第三方面来说,本发明涉及相邻层片之间被撑柱撑开的层状产品的制备方法,其中的撑柱是从元素周期表IB,IIB,IIIA,IIIB,IVA,IVB,VA,VB,VIA,VIIA和VIIIA等族中选定的至少一种元素的氧化物。这种制备方法的步骤包括从含有非硅骨架原子的层状硅酸盐开始,这一硅酸盐还具有与之相结合的阴离子性的位置,向这些位置引入有机阳离子物质,以将硅酸盐各层物理地隔开,再向已被隔开的硅酸盐层间引进能转化为氧化物的化合物,然后将该化合物转化为氧化物,以生成将相邻的各硅酸盐层隔开的氧化物撑柱。
所用的层状硅酸盐最好是层状硅酸例如高硅碱性硅酸盐,诸如合成的麦羟硅钠石(magadiite),合成的马水硅钠石(makatite)或合成的水羟硅钠石(kenyaite),它们只含有相互凝聚在一起的四面体层,没有插入的八面体层,并且它们是通过在一种或多种下述非硅元素存在下共结晶而合成的,这些非硅元素是由元素周期表IB,IIA,IIB,IIIB,IVA,IVB,VA,VB,VIA,VIIA及VIIIA等族中选出的,最好是由Al,Zr,B,Cr,Fe,Ga,In和Ni组成的这一组中选出的。撑柱最好是由多聚氧化硅或多聚氧化硅与多聚氧化铝的混合物形成。
本发明的方法的特别有效之处在于用这一方法能制备具有相当高的层间距(d-间距)的层状硅酸盐,即高于约10_,更可取的是高于20-30_,甚至超过30_。这类材料能经受像煅烧过程中遇到的那类苛该条件,即在450℃的氮气或空气中煅烧2小时或更长时间,比如4小时,而层间距并无明显减小,比如说减小程度小于10%。其次,制备这种多层硅酸盐不用使用极稀的稀释液,而在使用形成夹层的先有技术时,它是为了引进形成层间夹层材料所必需的。最后,在最终产品的层间夹层氧化物撑柱的大小,可在很大范围内改变,因为氧化物前体物质可以用一种电中性形式的物质引入,从而使结合入层状硅酸盐的层间夹层材料的量不决定于起始层状硅酸盐的电荷密度。在成柱反应之前用于将硅酸盐各层撑开的工序中,在确定被引入层间的阳离子物质的适配性能时,要将硅酸盐的电荷密度考虑在内。
层状硅酸盐最好是“非膨胀性的”,其用意是区别于一般粘土类材料,一般的粘土类材料含有结合在四面体配位的二氧化硅片层上的八面体配位的金属氧化物片层,并在遇水时会显著膨胀,有时实际上是无限量的膨胀。这里所用的关于层状硅酸盐的“非膨胀性的”这一术语,定义为表示一种层状硅酸盐,它在23℃下每克该层状硅酸盐至少与10克水相接触24小时,其d-间距比其遇水前增加不大于5_。属于这类物质的有麦羟硅钠石(magadiite)、钠沸石(natrosilite)、水羟硅钠石(kenyaite)、马水硅钠石(makatite)、涅水硅钙石(nekoite)、水硅钠石(kanemi-te)、水硅钙石(okenite)、片硅碱钙石(dehayelite)、莫水硅钙钡石(macdonaldite)和纤硅碱钙石(rhodesite),它们与可膨胀的粘土类物质不同,它们不含八面体层,也就是由与氧原子形成八面体配位的原子组成的片层。如果没有稳定的夹层撑柱,在温度升高时这些材料易于变成塌陷的层片,孔隙率低,且表面积小。已发现在有些情况下,在与有机阳离子原料化合物进行交换反应前或交换过程中,用一种或多种极性有机溶剂或水处理这类层状粘土或硅酸盐,是有好处的。所用的极性有机溶剂在气相中应当显示至少为3.0迪拜(D)的电偶极矩,更好至少为3.5D,最好是至少为3.8D。适宜的有机溶剂的实例是二甲亚砜(DMSO)和N,N-二甲基甲酰胺(DMF)。在“CRC Hand book of Chemistryand Physics”第61版(1980-1981)E-64至E-66页上刊有某些有机化合物及其电偶极矩的表。
本发明中优先选用的层状硅酸盐是高硅碱性硅酸盐类,它们的片层中没有八面体片层,它们是由二氧化硅和苛性碱的水相反应混合物在比较中等的温度和压力下经水热反应制备的。在这类硅酸盐的片层中含有四配位的非硅骨架原子,可以通过在下述非硅四价元素存在下通过共结晶而生成,这些四价元素是从Al,B,Co,Cr,Fe,Ga,In,Ni,Zr中选择的,也可以是在插入硅酸盐结构中时能起催化作用的任何其他元素。另一种制备方法是,对已含非硅骨架元素的硅酸盐,以另外的四配位元素进行取代。例如,当对在其骨架中含硼的水羟硅钠石以硝酸铝处理时,产生出在骨架中含铝的水羟硅钠石。用共结晶法和取代法生成的层状高硅碱性硅酸盐,都可经本发明处理而提供含有层间夹层氧化物撑柱的层状材料。
一种合适的层状硅酸盐是合成的、经取代的麦羟硅钠石。先以廉价来源的二氧化硅和苛性碱混合物经水热反应生成合成麦羟硅钠石。将非硅四配位元素X(如Al,B,Co,Cr,Fe,Ga,In,Ni,Zr,最好是Al或Fe)加入到这种反应混合物中,还可加入一适当的有机定向剂R。这种合成麦羟硅钠石型物质的反应混合物可以下列摩尔比描述SiO2/X2O3=10至无限,其中X可为Al,B,Co,Cr,Fe,Ga,和/或Ni,或其他能起催化作用的金属M+OH-/SiO2=0至0.6(最好是0.1-0.6)其中M为任一碱金属H2O/SiO2=8-500R/SiO2=0-0.4其中R为-有机物,比如苄基三乙基氯化铵,苄基三甲基氯化铵,二苄基二甲基氯化铵,N,N-二甲基哌嗪,三乙基胺,或其他四元化合物或杂环胺类,将该反应混合物在100-200℃下保温1-150天的任何天数,以形成具有下列成分的产品%N =0-3,比如0-0.3siO2/X2O3=10至无限其中X处于四面体或八面体位置上M2O/SiO2=0-0.5,比如0.05-0.1这样制成的层状硅酸盐具有的表面积较小。根据本发明的方法引入层间夹层多聚氧化物,能提高该材料的表面积。一般采用适当的方法将合成麦羟硅钠石型材料酸化,比如先用0.1N盐酸水溶液处理,然后再用“柱撑剂”(propping agent)处理,此时也可同时加入适宜的极性溶剂,如前所述。
另一种合适的层状硅酸盐是合成的水羟硅钠石型材料。水羟硅钠石是一种层状硅酸盐,已知其在自然界中以钠盐Na2Si22O45H2O存在,在实验室中可通过用廉价来源的二氧化硅和苛性碱(最好是KOH)的混合物反应而制得其钾盐K2Si22O4510H2O。可将四配位的非硅元素(比如从Al,B,Co,Cr,Fe,Ga,In,Ni,Zr这一组中选出的元素,或其他能起催化作用的金属)加到这一反应混合物中,以生成合成的水羟硅钠石型层状硅酸盐。Al(NO3)3·9H2O和三仲丁氧铝是向水羟硅钠石骨架中引入非硅四配位元素的适用反应剂。特别推荐用B,Al,Ga,Fe和/或Zr进行共结晶。这一反应混合物也能与水羟硅钠石结合形成晶种。
本发明的方法中使用的层状硅酸盐起始材料含有阴离子位置,在其上结合有阳离子。这类阳离子可包括氢离子、水合氢离子、铝离子和碱金属阳离子。对起始材料用构成有机阳离子原料化合物的“柱撑剂”处理,例如用有机铵阳离子处理,以便对起始材料的层间阳离子发生交换或加成反应,其结果是使起始材料的各层处于被相互撑离的状态。在层间阳离子包括氢离子或水合氢离子的情况下,有机阳离子原料化合物可包括中性化合物,例如有机胺,它在“柱撑”处理中能转化为阳离子型类似物。有时希望去除过量的柱撑剂,以使随后可以加入更多量的多聚氧化物前体化合物,因为柱撑剂在层状起始材料中不是静电结合的。可用适当的溶剂进行洗涤,以将过量柱撑剂去除。
通过前述处理过程,能形成增大了层间分离程度的层状硅酸盐,其层间分离的程度决定于引入的有机阳离子的大小。在一种实施方案中是进行一系列的有机阳离子交换反应。例如,一种有机阳离子可被尺寸更大的另一种有机阳离子所交换,从而能以逐级的方式增大各层间的分离程度。最好是在水溶液介质中进行层状氧化物与柱撑剂的反应,以使水能被截留在“已柱撑的”硅酸盐层间。
离子交换之后,用能转化为(最好是能水解为)多聚氧化物撑柱的化合物处理这一有机的“柱撑”物质。当这一处理过程包括水解时,就可利用已经存在于这一有机的“柱撑”层状硅酸盐中的水来进行水解反应。在这种情况下,在加入多聚氧化物前体之前,改变这一有机的“柱撑”物质被干燥的程度,可调整水解过程的深度。
沉积于层间的有机阳离子,最好是能被从层状硅酸盐中去除,而并不引起层间夹层多聚氧化物或其前体发生显著的破坏或除去。例如,正辛胺之类的有机阳离子,在处于较高温度时可被除去(如在氮气或空气中煅烧时),或可用化学氧化法除去,最好是在层间多聚氧化物前体已转化为多聚氧化物之后进行。
本发明的产品,尤其是煅烧后的产品,呈现出高表面积,比如高于200,400,甚至600米2/克,并具有高的热稳定性和水热稳定性,这就使它在作为烃类转化过程(如裂解和加氢裂解)的催化剂或催化剂担体使用时大有作为。
如前所述,在添加多聚氧化物原料化合物之前,对层状硅酸盐起始材料用能形成阳离子(比如形成有机磷或有机铵离子)的有机物进行处理。向相邻的各层之间插入有机阳离子的作用是为了将各层靠物理作用而分离,其方式是使层状硅酸盐能够接受一种电中性的能水解的多聚氧化物前体。尤其是发现烷基铵离子在本发明中很有用。C3或更长的烷基铵离子(比如正辛基铵阳离子)很容易结合到层状硅酸盐的层间空间去,从而使各层撑开使多聚氧化物前体得以能够结合进来。层间间距的大小可以控制,办法是使用不同大小的有机铵离子,所以使用正丙基铵离子能得到2-5_的层间距,而要想得到10-20_的层间距,则需要采用正辛铵离子或其他等效长度的离子。实际上有机阳离子的大小和形状确实影响它能否被结合到层状硅酸盐结构中去。如像四丙基铵这样块状(bulky)的阳离子,对用于现在这一方法一般是不理想的,而由正烷基伯胺衍生出来的正烷基铵阳离子和R3R′N+阳离子(其中R为甲基或乙基,R′为至少含5个碳原子的正烷基)就较好。将硅酸盐各层隔开的有机铵阳离子也可通过中性胺类物质与层状起始材料的层间氢阳离子或水合氢阳离子反应而在原地生成。还有一种方法是,当层状起始材料的层间阳离子是碱金属阳离时,可先使一种胺与一种酸(如盐酸)的水溶液化合,再用生成的有机铵离子水溶液处理层状硅酸盐而形成有机铵阳离子。在两种情况下,处理过程都是在水介质中进行为宜,以便水能使此后被引入“柱撑”产品中的电中性的能水解的多聚氧化物前体进行水解。
在硅酸盐起始材料的层间形成的层间多聚氧化物撑柱,可以是锆的氧化物或钛的氧化物,更好的是从元素周期表(FischerScientific Company Cat.No.5-702-10,1978)IVB族中选出的一种非碳元素即硅、锗、锡、铅的氧化物。其他的这类元素还有VA族的例如V、Nb、Ta,IIA族的例如Mg及IIIB族的例如B等。最好撑柱含有多聚氧化硅。另外,多聚氧化物撑柱可包含一种元素(最好是铝),这种元素在撑柱中形成具有催化活性的酸性位置。
多聚氧化物撑柱是由其前体材料形成的,这种材料最好是被引入有机物“柱撑”的层间,并以所希望的例如IVB族元素的阳离子化合物或电中性的能水解的化合物形式引入。前体材料最好是在常规条件下是液体的有机金属化合物。特别是采用所希望的撑柱元素的能水解的化合物作为前体,例如烷氧化物。适宜的多聚氧化硅前体材料包括四烷基硅酸酯类,例如四丙基原硅酸酯、四甲基原硅酸酯及更适宜的四乙基原硅酸酯。当撑柱中也需要包含多聚氧化铝时,可在层状硅酸盐与含硅的化合物接触之前、之后、或其同时,以能水解的铝化合物与有机物“柱撑”的物质相反应。所采用的能水解的铝化合物最好是烷氧基铝,如异丙氧基铝。如欲使撑柱中含有多聚氧化钛,可采用能水解的烷氧基钛之类的钛化合物,比如异丙氧基钛。
此外,多聚氧化物前体还可包含沸石类前体,以便在转化条件下生成至少作为某些多聚氧化物撑柱的层间沸石材料。在这种情况下,有机阳离子型柱撑剂的原料化合物,可以起沸石合成反应定向剂的作用。美国专利No.4151189公开了用于合成这一实例的沸石组分用的适宜的反应剂和反应条件。该专利还公开了适于沸石合成用的铝、硅和碱金属的氧化物,以及适用的沸石合成定向剂,例如像C4-C10正烷基胺类的有机氮阳离子原料化合物。适宜的氧化铝原料化合物包括铝酸钠、硫酸铝和矾土;适宜的碱金属原料化合物包括碱金属氢氧化物,例如氢氧化钠。适宜的反应条件包括将含沸石前体物的层状材料加热至99℃-260℃,保持6小时至60天,最好是149℃-232℃下保持12小时至8天。所得含有层间夹层沸石的层状材料,可在此后用离子交换和/或煅烧法进行处理。
经水解产生多聚氧化物撑柱,并经煅烧去除有机柱撑剂后,最终的含撑柱的产品可能含有残余的能被交换的阳离子。对存在于层状材料中的这类剩余阳离子,可用另外的阳离子物质通过已知方法进行离子交换去除,以形成或改变含撑柱产品的催化活性。适宜的置换阳离子包括铯、铈、钴、镍、铜、锌、锰、铂、镧、铝、铵水合氢离子及它们的混合物。
当作为催化剂使用时,将本发明的撑柱产品与另外的能经受有机转化过程中使用的温度和其他条件的材料(即基体)相结合是理想的。可作基体材料包括活性的和惰性的材料,合成的和天然产生的各类沸石,以及无机材料,如粘土、硅石和/或金属氧化物。后者可能是天然产出的或以胶凝状沉淀物或凝胶的形式存在的含硅石和金属氧化物的混合物。使用与含撑柱的产品相结合(即相互化合)的活性基体,有助于改善催化剂在某些有机转化过程中的转化能力和/或选择性。惰性材料适于作稀释剂用,以控制在给定工艺过程中的转化量,以便能经济地有次序地得到各种产品,而不需采用其他手段来控制反应速度。可将这类材料结合入天然产出的粘土类材料(比如膨润土和高岭土)中,以改善催化剂在工业操作条件下的抗碎强度。所述材料,即粘土类、氧化物等,对催化剂起粘接剂的作用。希望获得具有良好抗碎强度的催化剂,因为在商品性应用中希望防止催化剂破碎成粉状物质。这类粘土粘接剂一般只是在为改善催化剂的抗碎强度时使用。
天然产出的粘土类材料也有能与含撑柱的产品相复合的,它们包括蒙脱土类和高岭土类,高岭土类又包括次膨润土类和一般称作迪克西士(Dixie)、麦克内米土(McNamee)、佐治亚土(Georgia)和佛罗里达土(Florida)的高岭土,以及其主矿物成分为埃洛石、高岭石、地开石、珍珠陶土或蠕陶土的其他粘土。这类粘土可在其原来采出的原料状态下使用,也可经煅烧、酸处理或化学改性后使用。可用于与含撑柱产品复合的基体材料包括无机氧化物,特别是氧化铝和硅石。
除上述材料之外,本发明的含撑柱产品也可与多孔性基体材料相组合,例如磷酸铝、氧化硅-氧化铝、氧化硅-氧化镁、氧化硅-氧化锆、氧化硅-氧化钍、氧化硅-氧化铍、氧化硅-氧化钛,还可以是某些三元复合物,比如氧化硅-氧化铝-氧化钍、氧化硅-氧化铝-氧化锆、氧化硅-氧化铝-氧化镁和氧化硅-氧化镁-氧化锆等。最终形成的含有分开的撑柱的产品与无机氧化物凝胶体基体的相对比例变化范围很大,含撑柱产品的含量重量百分比为1-90,更为通常的,特别是当该复合材料是制成小球状或挤出物形式时,为复合材料重量的2-80%。
现参考下述实例对本发明进行更具体描述。在这些实例中,以下列方法测得吸附数据将已称重的样品与所需纯的被吸附蒸气接触,压力为低于该被吸附物室温下气液平衡压力。当吸附室中达到恒定压力时吸附反应即告完成(对于水要过夜,对碳氢化合物要3小时),例如对于水此恒定压力为12毫米汞柱,对于正己烷和环己烷为40毫米汞柱。然后将样品取出并称重。计算出样品的增重,作为样品的吸附容量。将用氮吸附的BET法测定的比表面积结果,表示为平方米/克的形式。通过采用铜辐射的K-α双重谱线的标准技术得到X射线衍射数据。当观察α值时应注意,该α值是被试验的催化剂的催化裂解活性与标准催化剂的催化裂解活性相比所得的一种近似的指标,从α值可以得到与α值取为1(速度常数=0.16/秒)的高活性氧化硅-氧化铝裂解催化剂的活性相比而得到的相对速度常数(单位体积催化剂、单位时间中,正己烷的转化速度)。在美国专利3354078号和《The Journal of Catalysis》Vol.IV.pp.522-529(August1965)中描述了α值的测定方法。
实例1-5与铝和/或铁共结晶并有二氧化硅夹层的合成麦羟硅钠石的制备实例1将24.5克二苄基二甲基氯化铵加入到含0.63克铝酸钠(43.3%Al2O3,32.2%Na2O,25.6%H2O)、4.0克NaOH和30.0克水的溶液中。将该混合物加入到134.0克胶态SiO2(30%)中并充分搅拌混合。将该混合物在静态反应器中140℃下加热21天。X射线衍射分析表明为含痕量丝光沸石的合成麦羟硅钠石材料。
实例2将2.49克FeNH4(SO4)2·12H2O溶于11.0克水中。将该混合物加入到5.23克NaOH溶于11.0克水的溶液中。将生成的混合物加入到72.6克40%SiO2的胶态二氧化硅溶液中并充分混合,然后在静态反应器中150℃下进行21天结晶。X射线衍射分析表明为合成麦羟硅钠石材料。
实例3将在10.0克水中溶有5.16克FeNH4(SO4)2的溶液与含6.86克二苄基二甲基氯化铵、6.86克NaOH和25.0克水的第二种溶液相混合。将此混合液加入到136克的30%胶态二氧化硅溶液中,并充分混合之。使反应混合物在150℃下进行23天的结晶。X射线分析表明为含有痕量沸石3的合成麦羟硅钠石。
实例4制备了下列各溶液A.NaAlO21.5克苄基三乙基氯化铵 64.5克水 180.0克B.NaCl 22.2克H2O 345.0克C.Q牌(Q-Brand)硅酸钠(28.8%SiO2,8.9%Na2O) 156.0克H2O 510.0克D.浓盐酸 8.5克H2O 200.0克将A加入B中。将AB混合物加至C中。将D加至ABC混合物中,并充分混合。
使反应混合物在搅拌反应器中150℃下结晶7天。X射线分析表明为合成麦羟硅钠石材料。
实例5制备了下列反应剂A.NaAlO20.96克NaOH 2.8克H2O 13.60克B.苄基三丁基氯化铵 22.3克C.30%胶态二氧化硅将B溶于A,再与C相混合。将所得混合物于静态反应器中100℃下进行结晶215天。X射线分析表明为合成麦羟硅钠石。
实例1至实例5的层状材料的组成和性质列于表1。
表1合成状态的层状硅酸盐的组成和性质实例 1 2 3 4 5组成,重量%SiO284.7 78.0 80.0 79.6 79.6Al2O30.73 0.18 0.05 2.1 2.0Fe - 0.83 1.1 - -Na 3.6 4.2 3.4 3.7 3.9N 0.26 - 0.25 0.07 0.07灰分 88.7 85.6 87.0 89.5 88.1
表1(续)实例 1 2 3 4 5SiO2/Al2O3200 750 2600 64.4 67.7表面积,米2/克 56 5 95吸附性能环己烷,重量% 2.1 0.5 3.9正己烷 2.2 - -水 7.7 2.9 10.4用下述程序使这些材料中含有夹层。
将25份(按重量)的每种固体样品加到100份的水中。室温下通过加入0.1N HCl逐步调整每种浆液的pH值至2,并在pH值为2下保持24小时。每种固体经过滤、水洗和干燥。将20份二甲亚砜和10份正辛胺的混合物加至每一干燥样品中,并反应约24小时。将每种混合物过滤,并在过滤器上干燥3小时。然后将每种样品在室温下加入到100份四乙基原硅酸酯中。约接触24小时后将样品过滤。样品干燥后在空气中1000°F下煅烧3小时。每种产品的分析表明为结晶多孔性材料。所得产品的组成及性能列于表2。
表2含撑柱的硅酸盐的性能基层材料 例1 例2 例3 例4 例5表面积;米2/克 486 598 583 360 634吸附容量,%H2O 17.9 22.6 23.1 - -
表2(续)基层材料 例1 例2 例3 例4 例5吸附容量,%CyC614.8 19.8 19.1 10.9 -n-C612.6 18.3 19.2 - -基层d-间距,_ 24.0 24.5 25.9 25.2 30.517.748 0.5 2.0 1.0 0.6(丝光沸石) (β-沸石)污染物 污染物实例6与氧化铝共结晶并含有多聚氧化硅夹层的合成麦羟硅钠石的制备将16.7克二苄基二甲基氧化铵溶解于含0.42克铝酸钠(43.3%Al2O3,32.2%Na2O,25.6%H2O)、4.0克NaOH和20.0克水的溶液中。然后将该混合物加至90.0克胶态二氧化硅(30%)中,充分混合。在118℃的静态反应器中将这一混合物在140℃下加热21天。
经鉴定所生成的材料为共结晶的合成麦羟硅钠石,具有下列组成N,重量 0.28Na 3.6Al2O30.75SiO281.0灰分 83.49SiO2/Al2O3摩尔比 184取一份这一材料,经540℃下煅烧16小时后,具有下列性能环己烷吸附40乇下为1.3克/100克煅烧后的材料的表面积为29米2/克取15克未经煅烧但经干燥(118℃下)的产品,按每克材料20毫升10%NH4Cl溶液的比例,使二者于85℃搅拌下接触5次,每次1小时。钠含量被降至低于0.01%。洗涤后的产品在118℃下干燥,在540℃下于空气中煅烧3小时,得到的α值为28。
取5克干燥但未经煅烧的这一材料,将其加至40毫升水中。逐滴加入0.1N HCl,以得到pH值为2的溶液,并保持这一pH值24小时。将混合物过滤,水洗,并在空气中干燥24小时。对该干燥样品用10克二甲亚砜和5克辛胺组成的混合溶液在室温下处理24小时。将样品再次过滤,在过滤器上空气干燥3小时。该干燥样品的X射线衍射图有一低角主峰,位于3.4°(2θ),表明基距为25.9_。
将所得材料加至20克四乙基原硅酸酯中保持24小时。将这样品过滤,于110℃干燥3小时,并在空气中540℃下煅烧3小时。这一煅烧样品的X射线衍射图上出现一个3.8°(2θ)的低角峰,表明基距为23.2_。其吸附性能为表面积为415米2/克;对水的吸附,在12乇下为14.2%;对环己烷的吸附,在40乇下为10.9%;对正己烷的吸附,在40乇下为9.4%,将2克煅烧过的该样品击碎并制成尺寸为14至25目的材料。然后通过α值测定试验检验这一样品的裂化催化活性。得到的α值为14,这表明产品是强催化活性物质。
实例7与氧化铝共结晶并含有多聚氧化硅夹层的合成水羟硅钠石的制备将14.1克三仲丁氧铝溶于150克水中,搅拌过夜(约18小时)。将该溶液缓慢加至胶态硅胶(172克,牌号Ludox LS,30%SiO2)中。向这一混合物中缓慢加入已溶于50克水中的10克KOH。加入5克纯二氧化硅水羟硅钠石(silica kenyait)为这一反应引晶。在汽柜中使这一反应混合物老化2小时,并在捣碎机中将生成的凝胶分散,然后转移至高压釜中。在150℃、自动形成的压力下,该混合物在搅拌下进行共结晶120小时。将产品过滤,用蒸馏水洗涤,空气干燥,以备进行特性测定。X射线衍射表明为水羟硅钠石产品。其表面积为34米2/克,化学分析表明SiO2/Al2O3约为25。将40克这种生成的材料悬浮在400毫升水中。向这一浆液加入1N HCl,直至pH值等于2。对这一悬浮液连续搅拌24小时,此后将悬浮液过滤、洗涤和空气干燥。取7克这一产品,再悬浮于20克水中,向生成的悬浮液加入20克辛胺。将其搅拌约18小时,加热约1小时,过滤,用温水洗涤,空气干燥24小时,然后在真空烘箱中于160°F干燥3小时。在35克四乙基原硅酸酯(TEOS)中将该干燥产品制成浆液,于密闭聚丙烯瓶中将其保存72小时。将该物质过滤、空气干燥,在500℃下煅烧4小时。最终产品在38.4_处有一条X射线低角衍射线。
实例8与氧化铝共结晶并含多聚氧化硅夹层的合成水羟硅钠石的制备将6.42克Al(NO3)3·9H2O溶于100克水中,然后缓慢加至200克胶态二氧化硅(牌号Ludox LS,30%SiO2)中。向该混合液加入已溶于100克水中的12克KOH。将该混合物置于汽柜中老化半小时,在捣碎机中将生成的凝胶分散。将凝胶装入高压釜,在150℃下,在自动生成的压力下进行搅拌的条件下结晶120小时。将产物过滤,用蒸馏水洗涤,并空气干燥。X射线衍射图表明为水羟硅钠石产品,同时核磁共振和化学分析确认事实上所有的铝都已以四面体配位于硅酸盐晶格中了。将所得产品(SiO2/Al2O3摩尔比约为100)40克悬浮于400毫升水中。向该浆液加入1N HCl,直至其pH值约为2。对此悬浮液连续搅拌24小时,过滤,洗涤,并空气干燥。将该产物7克再悬浮于20克水中,并向生成的悬浮液加入20克辛胺。对其搅拌约18小时,加热约1小时,过滤,温水洗涤,空气干燥24小时,然后在真空烘箱中160°F下干燥3小时。在密闭聚丙烯瓶中以35克四乙基原硅酸酯(TEOS)将上述干燥产品制浆,保持72小时。将该材料过滤、空气干燥,在500℃下煅烧4小时。最终产品在38.4_处有X射线低角衍射线。
实例9-13以300克水溶解21.3克H3BO3,将其加至515克胶态二氧化硅(牌号Ludox LS,30%SiO2)中。向这一混合液加入KOH溶液(粒状85%KOH 30克溶于300克水)。在捣碎机中将该凝胶分散,以保证充分混合。由于反应混合物的体积太大,将其分为两半,分别装入两只600毫升的高压釜中。二者均在150℃下在自动生成的压力下,边搅拌边进行结晶168小时。将产物过滤,水洗,空气干燥,以进行随后的特性测定。X射线衍射主线位于20_处和3.4_处,分别表征基距和平面内的反射。向均为0.05M的Fe(NO3)3,Cr(NO3)3,TiCl3和La(NO3)3等金属(M)盐的水溶液中各加入一份该层状硅酸盐(10克)制成浆液。将它们加热至60℃,保持2小时,不加搅拌。然后将它们过滤,温水洗涤,空气干燥。
用同前列诸例中相同的方法,使这些〔M〕水羟硅钠石生成物含有撑柱,以形成结晶分子筛。这些材料的X射线射图显示相应于约23_基距的宽线,将这些基距换算为层间距,为6_。关于这些材料的数据列于表3中。
实例14以类似于前述实例9至13中所描述的方法制备了一种含铝水羟硅钠石,不同之处在于将40克经空气干燥的产品置于200毫升1M Al(NO3)3溶液中,在80℃下搅拌24小时。重复这一操作之后,将该产品过滤、洗涤、空气干燥。该产品的组成列于表3。通过铝的核磁共振表示的该材料的特征为在该材料中同时存在四面体的(即沸石型的)和八面体的铝。八面体铝的信号很窄,表明铝是处于层内的水合铝离子Al3+(H2O)6。用前述各例中相似的方法使该产品含撑柱,以得到基距为32_的结晶分子筛。层状相和含撑柱产品的组成和性能列于表3。该材料的己烷裂解活性α为1。
表3例9 例10 例11 例12 例13 例14M= B(a)Fe Cr Ti La Al层状相SiO2/M 96 35 270 72 43 40SiO2/KOH 17 780 1000 360 255 ∞表面积(米2/克) 无数据 177 139 172 142 151
表3(续)例9 例10 例11 例12 例13 例14含撑柱产品SiO2/M 无数据 50 95 48 无数据 50SiO2/KOH 无数据 372 ∞ ∞ 19 ∞表面积(米2/克) 无数据 401 321 345 218 517实例15将3.54克H3BO3溶干100克水中,再将此溶液加至172克胶态二氧化硅(牌号Ludox LS,30%SiO2)中。向这一混合物中加入KOH溶液(100克水中溶有10克粒状85% KOH)。在捣碎机中将这一凝胶分散,以保证充分混合。将反应混合物装入高压釜,在150℃下,在自动生成的压力下搅拌的条件下结晶120小时。将产物过滤,用800毫升0.05M的Al(NO3)3溶液洗涤,并空气干燥,以备随后的特性测定用。表征基距的X射线衍射主线位于20_,3.4_的主线则表征晶面内的反射。出现的其他衍射线位于9.8_,8.8_,7.2_,3.7_和3.2_。该产物的SiO2/Al2O3=56,SiO2/KOH=1850,表面积为146米2/克,α值为1.3。27Al核磁共振谱和程序升温氨解吸(TPAD)曲线表明被检出的铝是四面体配位的,但不是全部的铝都被检出了。这是由于有些铝处于高度畸变环境中。
用前述实例用的相同方法使这一层状产品具有撑柱,以制得基距为36.7_的分子筛,其表面积为589米2/克,SiO2/Al2O3=100。TPAD与全铝分析定量地符合,表明铝是四面体的、沸石型铝。
实例16-19重复在实例15中描述的含铝水羟硅钠石的制备过程,并将产品分为四份。用前述实例9至实例13中描述的类似方法,对每一份用一种金属盐水溶液处理,以置换铝或合成的方法得到混合金属体系。表4中列出了这些最终产品的元素组成和表面积。这些含金属M的水羟硅钠石的X射线衍射图与对合成状态的含铝水羟硅钠石所观察到的相似。
像在前述各例中那样使这些样品具有层间撑柱,所得含撑柱产品的性能列于表4。这些分子筛的结晶性比实例9-13的要好得多。
表4实例号 16 17 18 19合成状态下 Fe Cr Ti La层状相SiO2/M - 95 370 91 1800SiO2/Al2O3100 105 88 244 66SiO2/KOH 40 3800 4000 3200 1200表面积(米2/克) 无数据 137 147 162 143含撑柱的相SiO2/M - 170 1000 97 无数据SiO2/Al2O3无数据 235 147 450 138SiO2/KOH 无数据 ∞ ∞ ∞ ∞表面积(米2/克) 无数据 574 551 569 528基距(_) 无数据 30.4 27.6 29(a)2.0
实例20-27用与实例14相同的方法制备水羟硅钠石,但不用Al(NO3)3溶液洗涤合成状态下的材料,而是将其直接用金属盐的溶液(500毫升,0.05M)洗涤。这些产品的组成列于表5。
表5实例号 20 21 22 23 24 25 26 27合成状态的 Fe Cr Ti La NH4+不洗 Ga Co层状相SiO2/M 20 36 190 36 30 25 - 28 19SiO2/B2O3115 132 132 145 425 150 8 - -SiO2/KOH 21 ∞ ∞ ∞ 476 1200 17 ∞ ∞表面积(米2/克)- 163 135 154 116 139 12 126 124然后可象在前述各例那样进行处理以生成撑柱。
实例28-29通过向结晶之前的反应混合物加入金属盐溶液,分别直接制备了含镓的和含铁的水羟硅钠石。为此,将8.5克Ga(NO3)3或13.5克Fe(NO3)3溶于水中,然后加至200克胶态二氧化硅(牌号Ludox LS)中。向这一溶液加入KOH溶液(20克粒状85%KOH,100克水)。将生成的凝胶在汽柜中老化约1小时,分散于100毫升水中。该反应混合物在带搅拌的600毫升高压釜中,在自动生成的压力和150℃下,结晶144小时。将产品过滤,水洗,空气干燥。这些硅酸盐产品的组成、基距和表面积,列于表6。
曾用71Ga的核磁共振谱来确定实例28含镓的水羟硅钠石的特性。没能得到定量数据,但定性地看出镓是四面体的,并处于高度畸变环境中。没有观察到呈八面体配位的镓。
使其含撑柱的过程同前。
实例30-31用与实例28和29中相似的方法分别合成含镓的和含铁的麦羟硅钠石,不同处是以12克NaOH代替KOH。合成产品的组成和表面积列于表6。71镓的核磁共振再次表明,含镓麦羟硅钠石中全部可被检出的镓全是四面体的,没有存在八面体的、水合镓离子Ga3+(H2O)8或Ga2O3的任何迹象。
表6实例28 实例29 实例30 实例31Ga Fe Ga Fe层状相SiO2/M 37 25 48 27SiO2/XOH 8 8 无数据 360表面积(米2/克) 5 23 46 4

一种层状产品,此产品包括含有非硅骨架原子的层状硅酸盐和将硅酸盐各层隔开的撑柱,该撑柱是从元素周期表IB,IIB,IIIA,IIIB,IVA,IVB,VAVB,VIA,VIIA,VIIIA,等族中选出的至少一种元素的氧化物。



查看更多专利详情

下载专利文献

下载专利