早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

4-取代的吡啶-3-基-甲酰胺化合物和使用方法

  • 专利名称
    4-取代的吡啶-3-基-甲酰胺化合物和使用方法
  • 发明者
    小艾伦.J.埃本斯, 王晓晶
  • 公开日
    2012年8月1日
  • 申请日期
    2010年9月7日
  • 优先权日
    2009年9月8日
  • 申请人
    霍夫曼-拉罗奇有限公司
  • 文档编号
    A61K31/427GK102625807SQ201080050398
  • 关键字
  • 权利要求
    1.式(I)化合物或其盐,其中2.具有式(I’)的权利要求I的化合物3.具有式(II)的权利要求I的化合物4.具有式(III)的权利要求I的化合物5.具有式(IV)的权利要求I的化合物6.具有式(V)的权利要求I的化合物7.权利要求1-6中的任一项的化合物,其中R1为H、烷基、环烷基、芳基或杂芳基,其中所述烷基、环烷基、芳基或杂芳基任选取代有1-3个R4基团8.权利要求1-7中的任一项的化合物,其中R1为H、低级烷基、环烷基、芳基、杂环烷基或杂芳基,其中所述低级烷基、环烷基、芳基或杂芳基任选取代有1-3个R4基团,其中每个R4 独立地为低级烷基、苯基、卤素、-OCF3> -C(=0)N(R7)2, -OR7, -N(R7)2, -NR7C(=0) R7,以及其中每个R7独立地为H或低级烷基9.权利要求1-8中的任一项的化合物,其中R1为H、低级烷基、低级环烷基、苯基、批咯烷基、哌啶基、吡唑基、吡啶基、咪唑并[1,2]吡啶基或喹啉基,其中所述低级烷基、环烷基、芳基或杂芳基任选取代有1-3个R4基团,其中每个R4独立地为低级烷基、苯基、卤素、-0CF3、-C (=0) N (R7)2, -OR7, -N(R7)2 或-NR7C (=0) R7,以及其中每个 R7 独立地为 H 或低级烧基10.权利要求1-9中的任一项的化合物,其中R2为H或NH211.权利要求1-10中的任一项的化合物,其中R3为卤素或N(R4)2,其中所述两个R4基团形成具有另外0-2个选自0、S和N的杂原子的5-6元环,所述环任选取代有1-3个R7基团12.权利要求1-11中的任一项的化合物,其中R3为卤素或N(R4)2,其中两个R4基团与所述连接的N原子一起形成具有另外0-2个选自O、S和N的杂原子的5-6元环,所述环任选取代有1-3个R7基团,其中每个R7独立地为0H、卤素、-N(H) 2或-NHC (=0) CF313.权利要求I的化合物,其选自 (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (2-氟代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (2-氯代苯基)噻唑-4-甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(2,6-二氟代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (5-溴代-2-氟代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (5-溴代-2-氯代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (3-溴代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-苯基噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-甲基噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(吡啶-2-基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(吡啶-3-基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (4-氯代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (3-氯代苯基)噻唑-4-甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌 啶-I-基)吡啶-3-基)-2-(2-(三氟代甲氧基)苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-叔丁基噻唑-4-甲酰胺; 5-氨基-N- (4-氯代吡啶-3-基)-2- (2,6- 二氟代苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (5- ( 二甲基氨基甲酰基)-2-氟代苯基)噻唑-4-甲酰胺; ⑶-5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(咪唑并[1,2_a]吡啶-2-基)噻唑-4-甲酰胺; (S) -5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-苯基-IH-咪唑-4-甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(( 二甲基氨基)甲基)噻唑_4_甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(3-氨基甲酰基苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (5-氯代-2-氟代苯基)噻唑_4_甲酰胺; 5-氨基-2- (2,6- 二氟代苯基)-N- (4-(哌啶-I-基)吡啶-3-基)噻唑-4-甲酰胺;(S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(2,6-二氟代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (3-乙氧基-2,6- 二氟代苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (3-丙氧基-2,6- 二氟代苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(3- 丁氧基-2,6- 二氟代苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (3-异丙氧基_2,6- 二氟代苯基)噻唑-4-甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(4-甲苯基噻唑)-4-甲酰胺; (S) -5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(3-甲苯基噻唑)-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (4- (3-乙基脲基)苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(吡啶-4-基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (2,6- 二氟代-4-甲氧基苯基)噻唑-4-甲酰胺;(S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (2-氟代-4-甲氧基苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-异丙基噻唑-4-甲酰胺; (S) -5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-环己基噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-苄基噻唑-4-甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(2-甲氧基苯基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-邻甲苯基噻唑-4-甲酰胺;(S) -5-氨基-N- (4- (3-氨基哌唳-I-基)卩比唳-3-基)-2- (2,5- 二氟代苯基)噻唑_4_甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(2,4-二氟代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌唳-I-基)卩比唳-3-基)-2- (2,3- 二氟代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(喹啉-7-基)噻唑-4-甲酰胺; (S) -N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (2-氟代苯基)噻唑_4_甲酰胺; (S)-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(2,6-二氟代苯基)噻唑-4-甲酰胺; (S) -N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (5- ( 二甲基氨基甲酰基)~2~氟代苯基)噻唑-4-甲酰胺; (S) -N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-苯基噻唑-4-甲酰胺; (S) -5-氨基-2-节基-N- (4- (3- (2, 2, 2- 二氟代乙酰氨基)哌唳-I-基)卩比唳-3-基)噻唑-4-甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)卩比啶-3-基)-2- (1H-吡唑-3-基)噻唑-4-甲酰胺; (3)-5-氨基-2-(2,6-二氟代苯基)4-(4-(3-羟基哌啶-1-基)吡啶-3-基)噻唑_4_甲酰胺; (R) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (2-氟代-5-(异丙基氨基甲酰基)苯基)噻唑-4-甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(2, 6-二甲基苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2- (2-氯代-6-氟代苯基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)卩比啶-3-基)-2- (1H-吡唑-4-基)噻唑-4-甲酰胺; ⑶-5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(咪唑并[1,2_a]吡啶-3-基)噻唑-4-甲酰胺;(S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(2,6-二氯代苯基)噻唑_4_甲酰胺; ⑶-5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(丙-I-烯-2-基)噻唑_4_甲酰胺; (S) -5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-环戊基噻唑-4-甲酰胺;⑶-5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(咪唑并[1,2_a]吡啶-6-基)噻唑-4-甲酰胺; 5-氨基-N- (4- ((3S, 5R) -3-氨基-5-氟代哌唳-I-基)批唳-3-基)~2~ (2-氟代苯基)噻唑-4-甲酰胺; 5-氨基-N- (4- ((3S, 5R) -3-氨基-5-氟代哌唳-I-基)批唳-3-基)~2~ (2, 6- 二氟代苯基)噻唑-4-甲酰胺; 5-氨基-N- (4- (3-氨基哌啶-I-基)吡啶-3-基)-2-(吡咯烷-3-基)噻唑-4-甲酰胺; 5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(哌啶-3-基)噻唑-4-甲酰胺; (S)-5-氨基-N-(4-(3-氨基哌啶-I-基)吡啶-3-基)-2-(3-氟代吡啶_2_基)噻唑-4-甲酰胺14.具有式(VI)的权利要求I的化合物15.药物组合物,其包含权利要求1-14中的任一项的化合物和可药用载体16.权利要求15的药物组合物,其还包含第二化学治疗药物17.制备药物组合物的方法,其包括将权利要求1-14中的任一项的化合物与可药用载体组合18.抑制细胞中的PIM激酶活性的方法,其包括使所述细胞与有效量的权利要求1-14中的任一项的化合物接触19.通过调节PIM激酶活性来治疗病症的方法,其包括向需要所述治疗的患者给予有效量的权利要求1-14中的任一项的化合物或权利要求10的药物组合物20.治疗患者中的癌症的方法,其包括向所述患者给予治疗有效量的权利要求1-14中的任一项的式I化合物或权利要求15的药物组合物21.权利要求20的方法,其中所述癌症为选自以下的造血系统恶性肿瘤非何杰金淋巴瘤、弥漫性大造血淋巴瘤、滤泡性淋巴瘤、外套细胞淋巴瘤、慢性淋巴细胞性白血病、多发性骨髓瘤、AML和MCL22.权利要求20的方法,其包括向所述患者给予治疗有效量的第二化学治疗药物23.权利要求22的方法,其中将所述治疗有效量的具有式I的化合物和所述治疗有效量的第二化学治疗药物作为组合制剂给予24.权利要求22的方法,其中将所述治疗有效量的具有式I的化合物和所述治疗有效量的第二化学治疗药物交替给予25.权利要求22的方法,其中所述第二化学治疗药物选自式A和式B26.权利要求22的方法,其中所述治疗组合的给药导致协同效果27.用于治疗造血系统恶性肿瘤的制品,其包括 a)权利要求I的化合物;和 b)使用说明书28.权利要求27的制品,其还包括选自式A和式B的第二化学治疗药物29.权利要求1-14中的任ー项的化合物在制备药物中的用途,所述药物用于治疗选自以下的造血系统恶性肿瘤非何杰金淋巴瘤、弥漫性大造血淋巴瘤、滤泡性淋巴瘤、外套细胞淋巴瘤、慢性淋巴细胞性白血病、多发性骨髄瘤、AML和MCL30.权利要求1-14中的任ー项的化合物,其用于治疗选自以下的造血系统恶性肿瘤非何杰金淋巴瘤、弥漫性大造血淋巴瘤、滤泡性淋巴瘤、外套细胞淋巴瘤、慢性淋巴细胞性白血病、多发性骨髓瘤、AML和MCL31.权利要求29的用途,其还包括使用选自式A和式B的第二化学治疗药物
  • 技术领域
    本发明涉及式⑴的4-取代的N-(卩比啶-3-基)甲酰胺,其可用作激酶抑制剂,更具体地,可用作Pim激酶(Pim-l、Pim-2和/或Pim_3)抑制剂,因此可用作癌症治疗药物本发明还涉及组合物,更具体地,包含这些化合物的药物组合物和单独或组合地使用这些化合物治疗各种形式的癌症和过度增殖性疾病的方法,以及使用所述化合物体外、原位和体内诊断或治疗哺乳动物细胞或相关病理状态的方法
  • 背景技术
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:4-取代的吡啶-3-基-甲酰胺化合物和使用方法Pim激酶是由基因Pim-1、Pim-2和Pim_3编码的三个高度相关的丝氨酸和苏氨酸蛋白激酶的家族。基因名称来源于Anton Berns等人的寻找导致淋巴瘤的癌基因的开创性实验,名称衍生自短语莫洛尼前病毒插入(£roviralInsertion, Moloney),因为它们作为鼠莫洛尼病毒的常见整合位点被发现,其中所述插入在转基因Myc驱动的淋巴瘤模型(transgenic Myc-drivenlymphoma model)中导致Pim过表达和新生T-细胞淋巴瘤或肿瘤发生的显著加速,不仅揭示与癌基因c-Myc的强协同作用,而且揭示在Pim激酶家族成员之中的功能丰余性,并暗示抑制Pim可具有治疗益处。(Cuypers et al. Murineleukemia virus-induced T—cell lymphomagenesis: integration ofprovirusesin a distinct chromosomal region.Cell (1984)vol. 37(I)pp. 141-50;Selten etal.Proviral activation of the putative oncogene Pim-I in MuLV inducedT—celllymphomas. EMBO J (1985)vol. 4 (7)pp. 1793-8;van der Lugt et al. Proviral taggingin E mu-myc transgenic mice lacking the Pim-Iproto-oncogeneleads tocompensatory activation of Pim-2. EMBO J (1995)vol. 14 (II)pp. 2536-44;Mikkerset al.High-throughput retroviral tagging to identifycomponents of specificsignaling pathways in cancer. Nature Genetics(2002)vol.32 (I)pp. 153-9;vanLohuizen et al.Identification of cooperating oncogenes in Emu-myc transgenicmice by provirus tagging. Cell (1991) vol. 65 (5) pp. 737-52)。鼠遗传学表明,拮抗Pim激酶应具有可接受的安全分布;Pim 1_/_、Pim_2-/-、Pim-3-/-鼠敲除可存活,尽管稍小于野生型同窝出生仔畜(Mikkers et al. Micedeficient for all PIM kinases display reduced body size and impairedresponsesto hematopoietic growth factors. Mol Cell Biol (2004)vol. 24(13)pp. 6104-154) 所述三种基因产生蛋白激酶结构域无差别的六种蛋白同工型。具体地,它们没有可识别的调节结构域。全部六种同工型为不需要活性的翻译后修饰的组成性活性蛋白激酶,因此Pim激酶主要在转录水平调节(Qian et al. Structural basis of constitutive activityand a unique nucleotide binding mode ofhuman Pim-lkinase. J Biol Chem(2005)vol. 280 (7)pp. 6130-7)。Pim激酶表达可由细胞因子和生长因子受体高度诱导以及Pim是Stat蛋白(包括Stat3和Stat5)的直接转录祀标。例如,gp130-介导的Stat3增殖信号需要 Pim-1 (Aksoyet al. Self-renewal of murine embryonic stem cells issupported by theserine/threonine kinases Pim-Iand Pim-3. Stem Cells (2007)vol.25 (12)pp.2996-3004;Hirano et al. Roles of STAT3 in mediating the cellgrowth, differentiation and survival signals relayed through the IL_6familyof cytokinereceptors,Oncogene (2000)vol. 19(21)pp.2548-56;Shirogane etal. Synergisticroles for Pim-Iand c-Myc in STAT3_mediated cell cycle progressionandantiapoptosis. Immunity(1999)vol. 11(6)pp. 709-19)。已经显示,Pim激酶在细胞增殖和存 活途径中平行于PI3K/Akt/mT0R信号传递轴起作用(Hammerman et al. Pim and Akt oncogenes are independentregulators ofhematopoietic cell growth and survival. Blood(2005)vol. 105 (11)pp. 4477-83)。实际上,PI3k轴的几个磷酸化靶标(包括Bad和eIF4E-BPl)是细胞生长和细胞凋亡调节剂,并且也是 Pim 激酶的憐酸化革巴标(Fox et al. Theserine/threonine kinase Pim-2 isa transcriptionally regulated apoptotic inhibitor.Genes Dev(2003)vol.17(15)pp. 1841-54;Macdonald et al. Pim kinasesphosphorylate multiple sites on Bad andpromote 14-3-3binding and dissociationfrom Bcl-XL(Cell Biol (2006)vol. 7pp. I)。通过在Serl 12看门位点(gatekeepersite)上磷酸化前凋亡Bad蛋白,Pim-I激酶促进所述蛋白的失活,暗示Pim激酶在细胞存活中的角色,由于Bad的磷酸化提高Bcl-2活性并因此促进细胞存活(Aho et al BMC FEBS Letters (2004) vol. 571 (1-3) pp. 43-9; Tamburinietal.Protein synthesis is resistant to rapamycin and constitutes apromisingtherapeutic target in acute myeloid leukemia. Blood(2009)vol.114(8)pp. 1618-27)。同样,通过mTOR或Pim激酶磷酸化eIF4E_BPl导致eIF4E的去阻抑,从而促进mRNA翻译和细胞生长。另外,已经承认Pim-I通过磷酸化⑶C25A、p21和Cdc25C促进细胞周期进展(Mochizuki et al. Physical andfunctional interactions between Pim-1kinase and Cdc25A phosphatase. Implications for the Pim-l—mediated activationof the c-Myc signaling pathway. JBiol Chem(1999)vol. 274(26)pp. 18659-66;Bachmannet al.The oncogenicserine/threonine kinase Pim-Idirectly phosphorylates andactivates the G2/Mspecific phosphatase Cdc25C. Int J Biochem Cell Biol (2006)vol. 38(3)pp. 430-43;Wang et al. Phosphorylation of the cell cycle inhibitorp21Cip 1/WAF Iby Pim-lkinase. Biochim Biophys Acta(2002)vol. 1593 (I)pp. 45-55)0Pim激酶已经牵涉在多种人肿瘤学指征中。Pim激酶在转基因鼠模型中显示出与c-Myc-驱动和Akt-驱动肿瘤的强协同作用(Verbeek et al. Micebearing theE mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemiaprenatalIy.Mol Cell Biol (1991)vol. 11 (2)pp. 1176-9;Allen et al.Pim-2transgeneinduceslymphoid tumors, exhibiting potent synergy with c-myc. Oncogene(1997) vol. 15(10)pp. 1133-41;Hammerman et al. Pim and Aktoncogenes are independent regulators ofhematopoietic cell growth and survival. Blood (2005) vol. 105 (11) pp. 4477-83)。在急性髓样白血病(AML)(包括Flt3-ITD、BCR-abl和Tel_Jak2)中识别的癌基因的转化活性需要Pim激酶。这些癌基因在BaF3细胞中的表达导致Pim-I和Pim_2表达的强烈上调,从而导致IL-3非依赖性生长,以及随后的Pim抑制导致细胞凋亡和细胞生长停止(Adamet al. Targeting PIM kinases impairs survival of hematopoietic cellstransformedby kinase inhibitor-sensitive and kinase inhibitor-resistant forms ofFms—liketyrosine kinase 3and BCR/AB L Cancer Research(2006)vol. 66(7)pp. 3828-35)。在许多造血系统癌症中已经注意到Pim过表达和失调为经常性事件,包括白血病和淋巴瘤(Amson et al. The human protooncogene productp33pim is expressed during fetalhematopoiesis and in diverse leukemias. ProcNatl Acad Sci USA(1989)vol. 86(22)pp. 8857-61);Cohen et al. Increasedexpression of the hPim-2 gene in human chroniclymphocytic leukemia andnon-Hodgkin lymphoma. Leuk Lymphoma (2004)vol. 45(5)pp.951-5;Hiittmannet al.Gene expression signatures separate B—cell chroniclymphocytic leukaemiaprognostic subgroups defined by ZAP-70 and CD38 expressionstatus. Leukemia(2006)vol. 20(10)pp. 1774-82),以及多发性骨髓瘤(Claudio etal. Amolecular compendium of genes expressed in multiple myeloma. Blood(2002)vol. 100(6)pp. 2175-86)。在前列腺癌中,已经显示Pim-I过表达并与疾病进展相关(Cibull etal. Overexpression of Pim-1 during progression of prostatic adenocarcinoma.J ClinPathol (2006)vol. 59 (3)pp. 285-8;Dhanasekaran et al.Delineationof prognosticbiomarkers in prostate cancer, Nature(2001)vol.412 (6849)pp. 822-6)。在前列腺癌进展的鼠模型中Pim I表达随着疾病进展增加(Kim etal. Cooperativity ofNkx3. land Pten loss of function in a mouse model ofprostate carcinogenesis,Proc Natl Acad Sci USA(2002)vol.99 (5)pp. 2884-9)0已经报告Pim-1在具有c-Myc-驱动的基因特征的人前列腺肿瘤样品的亚类中是最高度过表达的 mRNA (El lwood-Yen et al. Myc-driven murine prostate cancershares mo Iecularfeatures with human prostate tumors. Cancer Cell (2003)vol. 4 (3)pp. 223-38) o已经显示Pim_3在胰腺癌和肝细胞癌中过表达和具有功能作用(Li et al. Pim-3, aproto-oncogene with serine/threonine kinase activity,isaberrantly expressed inhuman pancreatic cancer and phosphorylates bad toblock bad-mediatedapoptosis in human pancreatic cancer cell lines (CancerResearch (2006)vol. 66(13)pp. 6741-7;Fujii et al). Aberrant expression of serine/threonine kinasePim_3in hepatocellular carcinoma development and its role inthe proliferation ofhuman hepatoma cell lines (Int J Cancer(2005)vol.114(2)pp.209-18)o因此,存在多条证据支持Pim激酶抑制在肿瘤学中可能的治疗价值。除了这些应用之外,Pim激酶能够在正常免疫系统功能中发挥重要作用以及Pim抑制对于一些不同免疫病理学可为治疗性的,包括炎症、自身免疫性病症、过敏症和免疫抑制,从而用于器官移植(Aho et al. Expression of humanpim family genes is selectivelyup-regulated by cytokines promoting T helpertype I,but not T helper type 2,celldifferentiation. Immunology (2005)vol.116 (I)pp.82-8)。
本发明一般地涉及具有Pim激酶(Pim-l、Pim-2和/或Pim-3)抑制活性的具有式(I)的4-取代的N-(卩比啶-3-基)甲酰胺(和/或其溶剂化物、水合物和/或盐)。本发明化合物可用作Pim激酶抑制剂。因此,本发明化合物及其组合物可用于治疗过度增殖性疾病如癌症。本发明涉及式(I)化合物,其可用作激酶抑制剂,更具体地,可用作PIM激酶抑制剂,因此可用作癌症治疗药物。本发明还涉及组合物,更具体地,包含这些化合物的药物组合物和单独或组合地使用这些化合物治疗各种形式的癌症和过度增殖性疾病的方法,以及使用所述化合物体外、原位和体内诊断或治疗哺乳动物细胞或相关病理状态的方法。式(I)

查看更多专利详情

下载专利文献

下载专利