早鸽—汇聚行业精英
  • 联系客服
  • 帮助中心
  • 投诉举报
  • 关注微信
400-006-1351
您的问题早鸽都有答案
3000+专业顾问
搜索
咨询

感染性疾病的气体疗法制作方法

  • 专利名称
    感染性疾病的气体疗法制作方法
  • 发明者
    赵西林, K·德利卡
  • 公开日
    2013年6月12日
  • 申请日期
    2011年8月2日
  • 优先权日
    2010年8月2日
  • 申请人
    赵西林
  • 文档编号
    A01N37/18GK103153054SQ201180047822
  • 关键字
  • 权利要求
    1.一种含有氢气的可用于治疗分枝杆菌感染的气体混合物2.根据权利要求1所述的气体混合物,其特征在于所述的气体混合物还包含分压范围约0.17-0.30的氧气3.根据权利要求2所述的气体混合物,其特征在于所述的气体混合物还包含厌氧气体4.根据权利要求3所述的气体混合物,其特征在于所述的厌氧气体选自下组氮气、氦气、氩气、二氧化碳、及其组合5.根据权利要求3所述的气体混合物,其特征在于所述的气体混合物在一个大气压下的氢气体积含量约是0.1% - 85%6.根据权利要求3所述的气体混合物,其特征在于所述的气体混合物在一个大气压下的氢气体积含量约是1.0% - 83%7.根据权利要求3所述的气体混合物,其特征在于所述的气体混合物在一个大气压下的氢气体积含量约是2.5% - 3.5%或约78% - 80%8.一种用于治疗分枝杆菌呼吸道感染患者的方法,其特征在于包括患者在约I个大气压下直接吸入含氢气和氧气的气体混合物、使其到达患者的呼吸道9.根据权利要求8所述的方法,其特征在于所述的气体混合物还包含厌氧气体10.根据权利要求9所述的方法,其特征在于所述的厌氧气体选自下组氮气、氦气、氩气、及其组合11.根据权利要求8所述的方法,其特征在于所述的分枝杆菌感染为结核杆菌感染12.根据权利要求8所述的方法,其特征在于所述的气体混合物中氢气的体积含量约是0.1% - 4%或约75% - 85%,并且,所述的气体混合物包含氧气的体积含量约是15% - 50%以体积计13.根据权利要求8所述的方法,其特征在于所述的气体混合物中氢气的体积含量约是1.0% - 3.8%或约76% - 81%,并且,所述的气体混合物包含氧气的体积含量约是17% -40%14.根据权利要求8所述的方法,其特征在于所述的气体混合物中氢气的体积含量约是2.5% - 3.5%或约78% - 80%,并且,所述的气体混合物包含氧气的体积含量约是20% -25%15.一种治疗分枝杆菌呼吸道感染患者的方法,包括 (a)给患者施用双腔气管导管; (b)将含有厌氧气体的气体混合物通入被分枝杆菌感染的一侧肺,并且 (C)往另一侧肺通入空气或者氧气16.根据权利要求15所述的方法,其特征在于所述的厌氧气体选自下组氢气、氮气、氦气、氩气、二氧化碳、及其组合17.根据权利要求16所述的方法,其特征在于所述的气体混合物的压力约为I个大气压,包括 (a)氢气体积含量约为10%; (b)氮气体积含量约为85%;并且 (c)二氧化碳体积含量约为5%18.根据权利要求15所述的方法,其特征在于所述的厌氧气体选自下组氮气、氦气、氩气、二氧化碳、及其组合19.根据权利要求18所述的方法,其特征在于所述的气体混合物的压力约为I个大气压,包括 (a)氮气体积含量约为40%; (b)氩气体积含量约为40%;并且 (c)氦气体积含量约为20%20.一种治疗分枝杆菌呼吸道感染患者的方法,包括 (a)将患者置于某种高压仓体内; (b)往所述的仓体内充入气压约为3.5 - 50个大气压、含有氢气和氧气的气体混合物,其中氧气的分压范围约是0.17 - 0.30,并且 (c)将所述的气体混合物通过患者直接呼吸进入其呼吸道21.根据权利要求20所述的方法,其特征在于所述的高压仓体的气压约为4- 10个大气压22.根据权利要求20所述的方法,其特征在于所述的气体混合物包含选自下组的厌氧气体氮气、氦气、氩气、及其组合23.—种分枝杆菌污染表面的灭菌方法,包括将所述的表面暴露于含有氢气的气体混合物24.根据权利要求23所述的方法,其特征在于所述的表面为患有分枝杆菌皮肤感染的患者的皮肤
  • 技术领域
  • 专利详情
  • 全文pdf
  • 权力要求
  • 说明书
  • 法律状态
专利名称:感染性疾病的气体疗法的制作方法本发明涉及一种气体介导的杀菌方法,用来治疗感染性疾病,更具体地,本发明提供了一种全新的肺结核治疗方法。联邦政府所资助的研究的声明:本发明由美国国立卫生研究院基金(基金号:NIH DP2-0D007423及R01A1073491)资助完成,因此美国政府对本发明有一定权益。发明技术背景:分枝杆菌(Mycobacterium)是一个细菌属,包含了结核分枝杆菌(Mycobacteriumtuberculosis,简称结核杆菌或结核菌)和牛分枝杆菌(Mycobacterium bovis)。分枝杆菌能够定植其宿主而不使宿主显示任何症状,全世界已有几十亿人被结核杆菌无症状感染;它还能广泛感染其它物种,包括非人灵长类动物、大象及其他外来有蹄类动物、食肉动物、海洋哺乳动物及鹦鹉类鸟类等(Montali RJ, 200IRev Sci Tech20 (I): 291-303)。分枝杆菌感染极难治疗,这类菌群的细胞壁既不是革兰氏阴性也不是革兰氏阳性、非常坚固,并对青霉素之类干扰细胞壁合成的系列抗菌素具有天然抗性。这种独特的细胞壁结构使结核杆菌能存活于长时间暴露在酸、碱、去污剂、氧化爆发、补体溶解、多种抗生素等条件。大多数分枝杆菌对利福平等抗生素敏感,但这些抗生素的耐药菌群已经出现。与其它病原菌相似,结核杆菌的表面及分泌蛋白对其致病性起关键作用。结核杆菌是造成结核病的致病菌,已经感染了全世界三分之一的人口,每年造成170万人死亡。由于免疫功能损伤能够激活潜伏的结核感染,艾滋病(毒)的传播、免疫抑制剂在器官移植及自身免疫疾病中的大量使用、肿瘤病人的放疗化疗等正在使全球结核病问题进一步恶化。有效的结核病疗法虽然存在,但需要同时使用多种药物、且治疗周期很长。常常会遇到病人不遵医嘱服药、药物持续供应困难等问题,从而导致间歇治疗。特别是结核化疗需要极长时间,药物物流问题及治疗引起的不良反应都会使病人很难遵医嘱按时服药。结核病往往是以非住院方式来治,疗程6 - 9个月,甚至有些病例由于病人不遵医嘱用药,疗程会持续几年。结核病需要长疗程的另一原因可能是一部分感染的病菌进入休眠(潜伏)期,这些病菌对抗菌药物的敏感性被认为会消失。病人不遵医嘱服药还会造成耐药突变菌群的选择性扩增,导致多重耐药结核杆菌的产生。上述因素再加上肺结核的高感染菌量,致使多重耐药(MDR)结核病的发病率越来越高,目前已占全球结核病例的5%。广泛耐药(XDR)结核也已在很多国家有所报道,在有些地区甚至占到全部病例的20%以上。更为严重的是,许多国家已经开始出现对所有现有药物全部耐受(完全耐药,CDR)的结核杆菌。成功防控乃至最终根除结核病需要以下几个先决条件:缩短治疗时间、防止新耐药的产生、克服已经产生的耐药、以及既要有效杀灭生长菌也要有效杀灭休眠(生长停滞) 菌。结核杆菌生理上高度依赖氧气,其生长需要高浓度的氧气。作为哺乳动物呼吸系统的初始病原体,结核杆菌主要造成肺部感染;其不寻常的富含脂类(例如分枝菌酸)细胞壁结构是重要的致病因子,并可能是其耐药的一个原因。结核杆菌与氧气具有复杂的关系:将菌液移入厌氧罐、去除氧气,会导致细菌死亡,其死亡半衰期为10小时(Wayne L&LinK, 1982Infect Immun37:1042-1049);但当氧气缓慢去除时(如超过两个星期),结核杆菌进入一种既不死亡也不复制生长的休眠状态,这种休眠态使细菌对厌氧环境及多种抗结核药产生耐受性(Wayne LG&Hayes LG, 1996Infect.1mmun64:2062-2069)。这些体外实验结果有助于解释抗结核化疗出现前所使用的结核病萎陷疗法的疗效,萎陷疗法是通过人工气胸、人工气腹、或安装栓塞的办法把空气从所感染的肺部驱除出来。萎陷疗法驱除氧气具有被动性和逐渐性的特点,可能只是把结核杆菌从主动生长状态转变成非繁殖、潜伏(休眠)态,因此该疗法只能抑菌而非杀菌。
近期报道发现,一氧化氮生成剂乙烯三胺/ 一氧化氮聚合物(DETA-NO)可诱导牛分枝杆菌卡介苗(结核杆菌近源菌)在体外进入生长停滞的休眠状态(Hussain S,etal, 2009Antimicrob Agents Chemotherl57_161)。DETA-NO 处理一次即可使该菌生长停滞持续72小时,但重新暴露于空气会使其恢复生长。该报道还显示突发厌氧可导致细菌死亡,该死亡不能被DETA-NO诱导的生长停滞所阻断。
申请人认识到在现有的结核病疗法中(包括正在研发的新药)没有任何一种能满足上述可成功防控、乃至最终根除结核病所需要的几个先决条件。因此,寻找能快速有效治疗结核病的替代疗法是公共健康领域的一个重点。本发明正是要探讨、解决这些需求

简述:
本发明提供了一种用来治疗分枝杆菌感染的含氢气的气体混合物。在某些实施方式中,气体混合物含有分压约0.17 - 0.30的氧气,从而使气体混合物含氧,可直接用于正常呼吸。在另外一些实施方式中,气体混合物可包含厌氧气体,优选的厌氧气体成分选自下组:氮气、氦气、氩气、二氧化碳气、及其组合。在某些实施方式中,气体混合物在约一个大气压下含有氢气的量范围约是0.1% - 85%(体积比`),优选范围约1.0% - 83%(体积比),最优选范围约2.5% - 80% (体积比)。在某些实施方式中,气体混合物在大约一个大气压下含有不在爆炸极限内的氢气(这一点在具备与发明相关领域中一般专业技能的人来讲显而易见),优选氢气的含量范围约2.5% - 3.5%(体积比)或78% - 80% (体积比)。
本发明还提供了一种治疗分枝杆菌呼吸道感染患者的方法,该方法包括在一个大气压下让患者直接把氢气-氧气混合物吸入呼吸道。在某些实施方式中,分枝杆菌感染是由结核杆菌或牛分枝杆菌引起的呼吸道感染。在某些实施方式中,气体混合物还包含惰性气体,所述惰性气体成分优选地选自下组:氮气、氦气、氩气、及其组合。在另外一些实施方式中,把气体混合物注入到病患呼吸道的步骤在约一个大气压下完成,并且气体混合物中含有氢气的量范围约是0.1% - 4%(体积比)或75% - 85%(体积比),优选范围约1.0% - 3.8% (体积比)或约76% - 83% (体积比),更优选范围约2.5% - 3.5% (体积比)或约78% - 80%(体积比)。在另外一些实施方式中,气体混合物含有约15% - 50%体积比的氧气,优选含有17% - 40%体积比的氧气,更优选含有20% - 25%体积比的氧气。
本发明还涉及另一种分枝杆菌呼吸道感染患者的治疗方法,该方法包括:(a)给病人安装双腔气管插管,(b)给有分枝杆菌感染的一侧肺通入厌氧气体混合物进行治疗,和(c)给另外一侧肺通空气或氧气。在某些实施方式中,厌氧气体含有氢气;在另一些实施方式中,厌氧气体成分选自下组:氮气、氦气、IS气、二氧化碳气、及其组合。在其它一些实施方式中,当通气时间足够杀死一侧肺中的绝大部分细菌后,把连接到双腔气管插管两个不同腔的气体进行互换,从而使另一侧未治疗的肺吸入治疗气体混合物,已治疗的一侧肺通入空气或氧气。这种操作可以使两侧肺都得以治疗。在某些优选实施方式中,气体混合物在约一个大气压下含有10%体积的氢气、85%体积的氮气、及5%体积的二氧化碳气。在有些实施方式中,气体混合物在约一个大气压下含有40%体积的氮气、40%体积的氩气、及20%体积的氦气。
本发明还提供了一种治疗分枝杆菌呼吸道感染病人的方法,该方法包括:(a)将病人安放到高压仓,(b)往高压仓通入氢气-氧气混合气体,至压力达到约3.5 - 50个大气压,舱内氧气分压维持在约0.17-0.30,和(c)通过病人直接吸入方式将治疗气体导入呼吸道。在某些实施方式中,气体混合物还可含有惰性气体、用以充当氢气和氧气以外的成分,所述的惰性气体选自下组:氮气、氦气、氩气、及其组合。在某些优选实施方式中,高压仓内的压力范围约4 - 10个大气压。
本发明还提供了一种用含有氢气的气体混合物对分枝杆菌污染表面进行消毒的方法。在某些实施方式中,污染表面是患有分枝杆菌感染的病患皮肤或肢体。在另一些实施例里,污染表面可以是医疗和实验研究所用仪器的表面。
附图简述


图1描述不同气体与气体混合物对结核杆菌存活的影响。对数生长期结核杆菌H37Rv用下述不同气体或气体混合物处理:(A)压缩空气(▲ ),二氧化碳(Λ ),氮气(.),生物混合气(Bioblend, O ) ; (B)氦气(.),氦气修饰得生物混合气(氮气:氦气:二氧化碳气比例为85:10:5%, ■),気气(Λ ),氮-氩-氦混合气(氮-M:氦比例为40:40:20%,▲),氢气(□)。
图2描述Bioblend气体休克处理对不同药物敏感性和不同生理状态的结核杆菌的存活影响。(A)Bioblend对具有不同药物敏感性的临床分离菌株的杀灭作用。菌株ΤΝ10775 (药物全敏感临床分离株,斜线柱),菌株ΤΝ10536 (异烟肼耐药株,空白柱),菌株ΤΝ1626 (多耐药分离株,横线柱),菌株KD505 (超耐药株,实心柱);(B)Bioblend对菌株ΗΝ878感染的兔子肺匀浆液中结核杆菌的杀灭作用。斜线柱:右肺感染后4周(结核杆菌处于指数生长期);空白柱:左肺感染后8周(结核杆菌处于生长停滞/休眠期);实心柱:右肺感染后8周(结核杆菌处于生长停滞/休眠期);(C) Bioblend对生长与休眠结核杆菌杀灭作用的对比。有氧生长(斜线柱)与逐渐乏氧(在封闭的管子里生长20天,横线柱)结核杆菌H37Rv按图2Α方法用Bioblend处理不同时间。*表示已达到检测极限。
图3描述厌氧休克对人源巨噬细胞样细胞内结核杆菌的存活影响。(A)Bioblend对结核杆菌的杀灭作用。Bioblend(斜线柱),気气(横线柱);(B)Bioblend对未感染的THP-1类巨噬细胞的细胞毒性作用。THP-1细胞分别用BioblencK斜线柱)、氩气(横线柱)或压缩空气(实心柱)处理如图所示时间。
图4描述不同氢-氧混合气体对结核杆菌存活的影响。结核杆菌H37Rv按方法中所述分别用氢气-空气 (3.2%氢气混入空气,□)或氧气-氢气(1.5%氧气-98.5%氢气,O )处理不同时间。
图5描述不同气体对琼脂平板上生长的牛分枝杆菌BCG存活的影响。生长中的牛分枝杆菌BCG梯度稀释、涂布平板、平板至于厌氧缸中,分别用氦气(Λ ) >Bioblend( □)、或氢气(〇)通气冲洗厌氧罐不同时间,然后再把平板从厌氧缸取出,使细菌恢复生长。
发明的具体描述
此项发明涉及用于治疗感染性疾病的气体组分和方法,特别是感染源存在于呼吸道的疾病。在某些实施方式中,病情由分枝杆菌属细菌感染引起,特别是由结核杆菌感染引起。从实验检测结果来看,分枝杆菌严格意义上并不属于革兰氏阳性细菌(例如它们的结晶紫染色并不牢固),但是由于它们没有细菌外膜,所以仍被归属为耐酸性革兰氏阳性细菌。所有分枝杆菌都拥有一种比其它许多细菌都要厚实的特殊细胞壁,具有疏水性、蜡质性、并含有丰富的分枝菌酸/分枝菌酸酯。因此,任何熟悉本领域技术的人将可以理解在这里描述的此项发明和治疗方法适用于治疗由分枝杆菌种属(其中包括但不局限于结核杆菌,牛结核杆菌,麻风杆菌)导致的感染。
此项发明也为患者体内的分枝杆菌感染提供了一种治疗方法。此处“患者”代指动物;包括但不局限于哺乳动物,包括人类、其它灵长类生物和大象。特别要强调的是,此项发明证明了有效针对结核杆菌(人类结核病致病菌)的杀灭效果。持续有效的结核病防控乃至最终消除结核病的关键因素在于缩短治疗时间、防止新抗药性的产生、克服已经产生的抗药性,及同时杀灭生长期和休眠期的结核菌。应用厌氧气体、特别是氢气或含氢气体混合物对感染肺部进行治疗的方法满足了以上几点关键因素。
气体治疗方法可以广泛应用于各种形式的肺部结核治疗。如果治疗性气体能够到达感染肺部的各个病灶,气体治疗就可能快速消除结核杆菌导致的感染。即使治疗性气体不能渗透到远离气道的肉芽肿(这种情况对于高压下的气体小分子来说很罕见),气体治疗依然能够在几分钟或者几小时内将患者从开放性/传染性状态转变为非传染性状态;而运用多种抗生素联用的传统治疗方案达到同样目的则需要数月时间。
传统化学药物治疗对于多重耐药性(MDR)、广泛耐药性(XDR)和完全耐药性(OTR)结核病的治疗效果极其有限,因此气体治疗手段对于这些结核病的治疗则具有特殊优势。针对一些不适于手术介入治疗的结核病例(例如双侧、多病灶、或者重度浸润损伤),厌氧/含氢气气体治疗仍然有效。
气体治疗方 案理论上能满足结核病控制的四个关键要求:预期疗程很短,很难产生新抗药性,能克服已有的抗药性,以及对活动期和休眠期的细菌都能有效杀灭。至今为止,抗性突变株未被检测到(杀灭非常快速完全,预计抗性菌株没有机会产生)。由于抗性的产生取决于细菌的数量规模大小,而气体治疗能够快速并且显著性地减少细菌的存活量,因此气体治疗后后续抗感染治疗产生耐药性的可能性也会被抑制。因此,此项工作可能为结核病乃至其它传染性疾病的气体治疗开辟一个新思路。
虽然此项发明的具体实施内容在下文将会用单一或混合气体治疗结核的一个例子详细举例描述,但是此发明原理应该可以让专业人士将其扩展、并应用到其它疾病的治疗中。因此,如上所述,此发明的应用前景不只限于结核病治疗。
除了运用高压氧帮助治疗厌氧感染外,单一或混合气体以前从未被单独应用于感染性疾病的治疗中。本发明发现多种气体或气体混合物可以用于杀灭分枝杆菌。在结核杆菌培养液中通入厌氧气体(厌氧休克)会造成细菌快速死亡。虽然我们不想受任何理论束缚,我们认为:(1)氢气是造成结核杆菌快速完全死亡的关键气体组分,(2)不包含氢气的厌氧气体也能够完全杀灭结核杆菌,但是其杀灭速率远远低于含氢气气体,(3)含氢气体能够杀灭通过逐级耗氧而形成的结核杆菌休眠菌群,(4)氢-氧气体混合物能够杀死结核杆菌,但是其杀灭速率和效率都远远低于含氢厌氧气体混合物。因此,氢气和含氢气体混合物能够以一种超越通常想象中的氧气耗尽杀菌模式来实现快速、超强杀菌。气体介导的分枝杆菌杀灭作用具有如下特点:⑴快速完全(例如:在2 - 5分钟内造成超过7个数量级的细菌减少),(2)对于多种生理状态下的结核杆菌都有效(例如:在培养基中,在感染兔的肺部匀浆物中,在人源类巨噬细胞中),(3)对于多重耐药性和广泛耐药性菌株都有效,(4)对人体巨噬细胞无害。综上所述,申请人的基于气体的治疗手段为结核病提供了一个全新的治疗方法。
如下例中讨论,气体介导细菌细胞死亡的几个特征与气体治疗扰乱结核杆菌胞内正在进行的生理过程、进而导致其自我凋亡相吻合:(I)气体介导的细菌培养液浊度下降(用来替代显示细胞死亡),只在用活细胞时才能观察到,(2)对于冰上冷却的细菌,气体介导的细胞死亡不会发生,(3)气体介导的细胞死亡对于蛋白合成抑制剂不敏感,并且(4)气体介导的细菌死亡只会特异性地对结核杆菌和牛结核杆菌有效。综上所述,申请人发现了氢气是快速、完全杀灭结核杆菌的一种活性化学成分。氧气消耗清除可以帮助杀菌,但不是氢气介导杀灭作用的前提条件。据此,产生了直接应用气体治疗结核的三种潜在临床应用方式:最简单易行的应用方式是将低浓度的氢气(例如小于4%)与空气或其它含有足够氧气、能够用于患者常规呼吸的混合气体进行混合。第二种,也是一种更有效的应用形式,是在高压条件下运用含氧氢气(例如小于5%的氧气与纯氢气或与含氢气惰性气体混合)在高压条件下治疗患者。在高压条件下,常压下不能用来直接呼吸的极低浓度的氧气变得可以用于直接呼吸。由于高压、高浓度的氢气能够更好地渗透患者组织,高压治疗气体的有效性也应该随之增强。最有效清除结核杆菌的方法是运用双腔气管插管每次将氢气或含氢气厌氧混合气体导入一侧肺部。如下文讨论的,在这种治疗方法中,一个管腔将连接到左肺部而另一个连接到右肺部,治疗气体可以泵入泵出左肺部进行治疗,而氧气或空气输入到右肺部以维持正常呼吸;在短暂(如3 0分钟)治疗后可以把通入左、右侧肺的气体进行互换,从而使得两侧肺部都得到治疗。
混合气体组分和直接吸入疗法
如下所示,本发明的一个具体实施方案是运用一种安全的、含氢气体混合物来治疗分枝杆菌呼吸道感染患者的方法,这种气体可以直接被患者吸入。由上所述,本发明的一个具体实施涉及可用于分枝杆菌感染治疗、含氢气的气体混合物。在某些实施例中,气体混合物含有足够量氢气以有效治疗目标感染。混合气体还可含有足够量氧气,以便患者能直接呼吸。
在一个大气压的条件下,混合气体中氧气含量必须达到通常呼吸所需、但不会产生高氧毒性。因此,在某些实施例中,混合气体的含氧量(体积比)为15% - 50%,较优范围是17% - 40%,更优范围是20% - 25%。在某些实施例中,混合气体除了氢气和氧气、还包括惰性气体或厌氧气体。在某些实施例中,惰性气体或厌氧气体可能选自氮气、氦气、氩气、二氧化碳以及和它们相关的气体混合物。
在某些实施例中,在一个大气压下,混合气体由不会爆炸的氢气浓度与足够支持正常呼吸的氧气浓度混合,这种浓度对于熟悉本领域常规技术的人来讲显而易见。因此,在某些实施例中,混合气体中含氢量(体积比)的范围约是0.1% - 4%,较优范围约1.0% -3.8%,更优范围约2.5% - 3.5%。在其它实施例中,混合气体的含氢量(体积比)范围约是75% - 85%,较优范围约76% - 81%,更优范围约78% - 80%。
在某些优选实施方式中,在约I个大气压下该气体混合物由约占总体积3% - 4%的氢气和约占总体积21% - 30%的氧气组成。
能直接用于呼吸的气体混合物,可通过面罩供气,面罩连接至预先充满这种可呼吸气体的包装袋、压缩气体钢瓶或密闭系统(如可充气膨胀的仓体);密闭系统先充以能直接用于呼吸的气体混合物,病人呼吸产生的二氧化碳通过二氧化碳过滤器进行清除,病人消耗的氧气通过其它氧气供给源泵入补充。氢气不会被病人消耗,仅需在因故障泄漏而低于特定医疗浓度界限时再重新补充。
双腔气管插管介导的治疗方法

本发明的一项实施是一种关于分枝杆菌呼吸道感染的治疗方法,患者通过插入双腔气管插(导)管,往分枝杆菌感染的一侧肺中通入含氢气的气体混合物,往另一侧肺中通入空气或氧气。双腔气管导管已在许多需要单侧肺通气的医疗过程中使用过,是公知的医疗设备,可商业购买获得(如Covidien、Smiths Medicals、Med_Worldwide等品牌)。典型来说,单腔 气管导管是一种可通过插管到达病人气管的弹性导管,其另一末端连接有可充气的气囊。一般来说,双腔气管导管与单腔气管导管相似,除了有可延伸至气管的单腔导管夕卜,还拥有一个更长的、能插管到患者支气管的腔管。这种双腔气管导管或支气管导管一般连接有两个可充气气囊,能够通过独立腔体对每一侧的肺组织进行分别控制。可将病人体外腔体的特定位置进行封闭,封住一个支气管,从而达到隔离特定一侧肺的目的。
人体有左侧肺和右侧肺,它们可独立通气。在维持一侧肺的正常呼吸时,可用厌氧气体对另一侧肺进行短时处理,该过程可通过将双腔气管导管连接至双通道呼吸机(如美国专利N0.4.686.999中所描述)得以实现。通过切换通入两侧肺的气体种类,左右两肺都能得到治疗。从未感染的兔子获得的初步数据表明,这种直接治疗方法安全可行,例如,用氩气厌氧处理右侧肺15min,没有明显副效应产生。
在某些具体实施中,气体混合物含有对人体没有任何毒性或毒性极小的纯氢气或混合有氢气的厌氧混合气体。例如,在某些实施方案中该气体混合物含有生物混合气体(Bioblend),它由氮气、二氧化碳、氢气按85:5:10%体积配比而成,可从Praxair或GTS-Welco等公司购买获得。商业上也能够以客户定制方式获得其它含有氢气和厌氧气体的气体混合物,包括(但不限定于)氮气、氦气、氩气、二氧化碳及它们的混合物。在其它实施方案中,气体混合物由体积百分比约为40:40:20的氮气、氩气和氦气组成。
高压仓体介导的治疗方法

本发明的一项实施方式是一种关于用能够用在高压装置中安全呼吸的含氢气的气体混合物治疗病人的方法。传统高压仓体为具有坚硬外壳的容器,其工作压力可达到6个大气压。最近材料新技术的发展已经允许生产出了便携式、“软体”型的仓体,这些仓体可在约1.3 - 1.5个大气压下工作,已应用于呼吸高浓度或高分压的氧气。本发明对这种典型的高压仓作了改进,使原本在约I个大气压下不能用于呼吸的低氧-高氢的气体混合物可直接用于呼吸。氧气分压(氧气所占全部气体的体积比例与全部气体总绝对压力的乘积)决定了一种气体是否可被人体呼吸,因此,原本在I个大气压下无法被呼吸的低氧体积比(如3%)的气体混合物在7个大气压下变得被人体呼吸,因为在这种高压下、可使混合物中的低浓度氧气的分压接近于环境空气中的氧分压(例如I个大气压下空气含约21%体积比的氧气,其所产生的氧分压(0.21)与7个大气压下3%氧气浓度所产生的氧分压相同)。同时,氢气作为杀灭分枝杆菌的关键气体,在高压和高浓度下,能更好地透过病人的组织,因此,闻压仓体有望提闻氧气疗效。
在某些实施方式中,结核感染患者的治疗方法是:将病人放置在高压仓内,往仓内充入约2 - 50个大气压、由氢气-氧气组成的气体混合物,其中氧气分压约为0.21 (接近于环境空气中的氧气分压);该气体混合物通过病人直接呼吸进入呼吸道。在某些更理想的实施方式中,高压仓内的工作压力范围约3.5 - 42个大气压,较优范围约4.2 - 21个大气压,更优范围约5 - 10个大气压。
在某些实施方式中,气体混合物在高压仓内的氧气浓度低于5.3%(体积比),较优浓度为0.4% - 5%(体积比),更优浓度为2.5% - 4.2%(体积比)。在某些实施方式中气体混合物仅含有氢气和氧气,氧气添加到纯氢气中,使该气体混合物的氢气含量占总体积约94.7%以上,较优体积范围约95% - 99.5%,更优体积范围约95.8% - 97.5%。
在某些实施方式中,氧气可以添加到氢气-厌氧气体的混合物中,其中该厌氧气体可以为氮气、氦气、氩气及它们的不同混合物。在这种实施方式中,该气体混合物中氢气的含量范围约为1% — 99% (体积比),较优为4% - 96% (体积比),更优为10% - 90% (体积比)。
消毒灭菌方法

本发明的另一项实施方式是关于一种消除传染性病菌(特别是结核杆菌)的新型灭菌消毒方法。有些设备或表面不能经受苛刻的化学试剂、辐射或高温等极端处理,这些设备和环境表面被病菌污染后,可米用氢气或厌氧气体混合物(含氢气或不含氢气)进行灭菌消毒。具体实施中,可用该法进行灭菌 消毒的有受分枝杆菌感染的患者皮肤或肢体,在本实施方案中,先将被结核杆菌感染的待灭菌表面置于一个仓体内,再把仓体进行真空处理5-10分钟,然后如前所述通入氢气或含有氢气的厌氧气体,处理时间范围约2-48小时,较优时间为4-24小时,更优为过夜处理(约16 - 18小时)。具体实施例
以下具体实施例仅用于阐述、但不用于限定本发明范围。
细菌种类和培养条件
分枝杆菌(如表I所列 )接种至Middlebrook7H9或Dubos液体培养基(添加10%ADC、0.05%Tween80和0.2%甘油)或7H10琼脂平板(含有与7H9相同的添加物)[Jacobs WR, et al.,1991Methods Enzmol204: 537-555],于 37。C 培养。液体培养物置于15 或 50ml 试管,用转速为 35 - 40rpm 的水平滚轮(stovall Life Science, Greensboro,NC)摇动培养。在含5%C02的条件下于7H10平板培养4 - 8星期,监测菌落生长情况。大肠杆菌(Escherichia coli)、枯草芽抱杆菌(Bacillus subtilis)、弗氏志贺菌(Shigellaflexneri)、鼠伤寒沙门氏菌(Salmonella typhimurium)和铜绿假单胞菌(Pseudomonasaeruginosa)在LB液体或LB平板上培养;金黄色葡萄球菌(Staphylococcus aureus)培养于Mueller-Hinton液体培养液或其固体平板;烟曲霉菌(Aspergillus fumigatus)和新型隐球菌(Cryptococcus neoformans)培养于 YPD(l%yeast extract、2%peptone 和2%glucose)液体或其固体平板。新型隐球菌和溃瘍分枝杆菌(Mycobacterium ulcerans)于30° C培养,其它菌均在37° C培养。
表I本发明所用的微生物菌株


本发明涉及一种治疗分枝杆菌感染的气体混合物及其应用方法,其中气体混合物含有氢气。某些应用中,气体混合物还含有氧气或者选择性地含有或不含有惰性/厌氧气体,这些惰性/厌氧气体优选氮气、氦气、氩气、二氧化碳气、或由上述气体组成的各种混合物。治疗方法包括直接让病人吸入同时含有氢气和氧气的混合物,为病人安装双腔气管插管从而能对一侧肺进行厌氧气体治疗,以及在高压仓里用含有氢气-氧气的混合物对病人进行治疗。本发明还提供了一种用含有氢气的气体混合物对分枝杆菌污染表面进行消毒的方法。



查看更多专利详情